4 years DIY closed looping with #OpenAPS – what changed and what hasn’t

It’s hard to express the magnitude of how much closed looping can improve a person with diabetes’ life, especially to someone who doesn’t have diabetes or live closely with someone that does. There are so many benefits – and so many way beyond the typically studied “A1c improvement” and “increased time in range”. Sure, those happen (and in case you haven’t seen it, see some of the outcomes from various international studies looking at DIY closed loop outcomes). But everything else…it’s hard to explain all of the magic that happens in real life, that’s made so much richer by having technology that for the most part keeps diabetes out of the way, and more importantly: off the top of your mind.

Personally, my first and most obvious benefit, and the whole reason I started DIYing in the first place, was to have the peace of mind to sleep safely at night. Objective achieved, immediately. Then over time, I got the improvements in A1c and time in range, plus reduction in time spent doing diabetes ‘stuff’ and time spent thinking about my own diabetes. The artificial pancreas ‘rigs’ got smaller. We improved the algorithm, to the point where it can handle the chaos that is everything from menstrual cycle to having the flu or norovirus.

More recently, in the past ~17 months, I’ve achieved an ultimate level of not doing much diabetes work that I never thought was possible: with the help of faster insulin and things like SMB’s (improved algorithm enhancements in OpenAPS), I’ve been able do a simple meal announcement by pressing a button on my watch or phone..and not having to bolus. Not worrying about precise carb counts. Not worrying about specific timing of insulin activity. Not worrying about post-meal lows. Not worrying about lots of exercise. And the results are pretty incredible to me:

But I remember early on when we had announced that we had figured out how to close the loop. We got a lot of push back saying, well, that’s good for you – but will it work for anyone else? And I remember thinking about how if it helped one other person sleep safely at night..it would be worth the amount of work it would take to open source it. Even if we didn’t know how well it would work for other people, we had a feeling it might work for some people. And that for even a few people who it might work for, it was worth doing. Would DIY end up working for everyone, or being something that everyone would want to do? Maybe not, and definitely not. We wouldn’t necessarily change the world for everyone by open sourcing an APS, but that could help change the world for someone else, and we thought that was (and still is) worth doing. After all, the ripple effect may help ultimately change the world for everyone else in ways we couldn’t predict or expect.

Ripple_effect_DanaMLewisThis has become true in more ways than one.

That ‘one other person’ turned into a few..then dozen..hundreds..and now probably thousand(s) around the world using various DIY closed loop systems.

And in addition to more people being able to choose to access different DIY systems with more pumps of choice, CGMs of choice, and algorithm of choice, we’ve also seen the ripple effect in the way the world works, too. There is now, thankfully, at least one company who is evaluating open source code; running simulations with it; and where it is out-performing their original algorithm or code components, utilizing that knowledge to improve their system. They’re also giving back to the open source diabetes community, too. Hopefully more companies will take this approach & bring better products more quickly to the market. When they are ready to submit said products, we know at least U.S. regulators at the FDA are ready to quickly review and work with companies to get better tools on the market. That’s a huge change from years ago, when there was a lot of finger pointing and what felt like a lot of delay preventing newer technology from reaching the market. The other change I’m seeing is in diabetes research, where researchers are increasingly working directly with patients from the start and designing better studies around the things that actually matter to people with diabetes, including analyzing the impact and outcomes of open source technology.

After five years of open source diabetes work, and specifically four years of DIY closed looping, it finally feels like the ripples are ultimately helping achieve the vision we had at the start of OpenAPS, articulated in the conclusion of the OpenAPS Reference Design:

OpenAPS_Reference_Design_conclusionIs there still more work to do? Absolutely.

Even as more commercial APS roll out, it takes too long for these to reach many countries. And in most parts of the world, it’s still insanely hard and/or expensive to get insulin (which is one of the reasons Scott and I support Life For A Child to help get insulin, supplies, and education to as many children as possible in countries where otherwise they wouldn’t be able to access it – more on that here.). And even when APS are “approved” commercially, that doesn’t mean they’ll be affordable or accessible, even with health insurance. So I expect our work to continue, not only to support ongoing improvements with DIY systems directly; but also with encouraging and running studies to generalize knowledge from DIY systems; hopefully seeing DIY systems approved to work with existing interoperable devices; helping any company that will listen to improve their systems, both in terms of algorithms but also in terms of usability; helping regulators to see both what’s possible as well as what’s needed to successfully using these types of system in the real world. I don’t see this work ending for years to come – not until the day where every person with diabetes in every country has access to basic diabetes supplies, and the ability to choose to use – or not – the best technology that we know is possible.

But even so, after four years of DIY closed looping, I’m incredibly thankful for the quality of life that has been made possible by OpenAPS and the community around it. And I’m thankful for the community for sharing their stories of what they’ve accomplished or done while using DIY closed loop systems. It’s incredible to see people sharing stories of how they are achieving their best outcomes after 45 years of diabetes; or people posting from Antartica; or after running marathons; or after a successful and healthy pregnancy where they used their DIY closed loop throughout; or after they’ve seen the swelling in their eyes go done; etc.

The stories of the real-life impacts of this type of technology are some of the best ripple effects that I never want to forget.

Running and fueling for runs with type 1 diabetes

This blog post is not for you. (Well that sounds mean, doesn’t it? It’s not meant to be mean. But this post is written for a very small subset of people like me who are stumbling around on page 16 of Google trying to find someone sharing experiences and specific details around methods (both successful and less so) for fueling for longer endurance events such as full marathons or ultramarathons with type 1 diabetes. So – please don’t be offended, but also don’t be surprised if you don’t find this post very useful!)

I’ve started running again, and more, this year, and am now to the point where I’m considering running another full marathon sometime next year. As I adventure into running longer distances, and more miles, I’m reflecting on what I did in my first full marathon that worked related to diabetes, and what I want to try to do differently. This post is logging some of my experiences and notes to date, in honor of fellow page-16-of-Google-seekers, rather than waiting til after I run another full (if I do) and there continuing to be not much info out there.

Some background on my running:

I’m not a runner. And not a good runner. I never liked running. But, I walked the Seattle half marathon in December 2012 and thought it might be fun to then walk the full marathon in December 2013. However, I also tried snowboarding for the first time in January 2013 and majorly damaged my knee. I could barely walk the few blocks to work every day, let alone do my normal activities. It took several months, and several PT sessions, to get back to normal. But part of my frustration and pain manifested into the idea that I should recover enough to still walk that full marathon in December. And in order to be off the course by the time it closed, I would need to run a little bit. And I could barely walk, and never ran, so I would need to do some training to be able to run a mile or two out of the 26.2 I planned to otherwise walk. So I set off to teach myself how to run with the idea of walk/running the full, which evolved into a plan to run/walk it, and mostly eventually run it. And that’s what I did.

Now – this marathon was December 2013. This was right when we created DIYPS, and a year before we closed the loop, so I was in full, old-school traditional manual diabetes mode. And it sucked quite a bit. But now, almost 5 years later, with the benefit of everything I’ve learned from DIYPS and OpenAPS about insulin and food timing etc., here’s what I realized was happening – and why – in some of my training runs.

What I worried about was going low during the runs. So, I generally would set a low temporary basal rate to reduce insulin during the run, and try to run before dinner instead of after (to reduce the likelihood of running with a lot of active insulin in my body). I would also eat some kind of snack – I think for energy as well as making sure I didn’t go low. I would also carry a bottle of Gatorade to drink along the way.

With the benefit of 5 years of lots of learning/thinking about all the mechanics of diabetes, here’s what was happening:

Per the visualization, the carbs would hit in about 15 minutes. If I reduced insulin at the time of the run, it would drive my blood sugar up as well, over a longer time frame (after around 45+ minutes as the lack of insulin really started to kick in and previous basal impact tailed off). The combination of these usually meant that I would rise toward the middle or end of my short and medium runs, and end up high. In longer runs, I would go higher, then low – and sip gatorade, and have some roller coaster after that.

Now, this was frustrating in training runs, but I did ok for my long runs and my marathon had pretty decent BGs with no lows. However, knowing everything I know now, and commencing a new burst of running, I want to try to do better.

Here’s what I’ve been doing this year in 2018:

My original interest in running was to set a mileage goal for the year, because I didn’t run very much last year (around 50 miles, mostly throughout summer), and I wanted to try to run more regularly throughout the year to get a more regular dose of physical activity. (I am very prone to looking at Seattle weather in October-December and January-March and wanting to stay inside!) That mileage goal was ambitious for me since I didn’t plan to race/train for any distance. To help me stick to it, I divided it by 12 to give myself monthly sub-goals that I would try to hit as a way to stay on top of making regular progress to the goal.

(Ps – pro tip – it doesn’t matter how small or big your goal is. If you track % progress toward whatever your mileage goal is, it’s really nice! And it allows you to compete/compare progress, even if your friends have a much bigger mileage goal than you. That way everyone can celebrate progress, and you don’t have to tell people exactly what your mileage goal might be. What’s tiny for you is big for others; and what’s big for you may be small to others – and that doesn’t matter at all!)

This has worked really well. The first few months I scraped by in keeping up with my monthly goal. Except for February, when I had three weeks of flu and bronchitis, so I surged in March to finish February’s miles and March’s miles. I then settled back into a regular amount, meeting my monthly goals…and then surged again in August, so I was able to finish my yearly mileage in the middle of September! Wahoo! I didn’t plan to stop there, though, so I planned to keep running, and that’s where the idea of running the Seattle half (always the Sunday after Thanksgiving) popped up again, and maybe a full next year. I started adding some longer runs (two 7.5 miles; a 9.35 miler, and now a 13 miler) over the past month, and have felt really good about those, which has enabled me to start thinking more carefully about what I did last time BG-wise and why this time is so much easier.

Earlier in the year, even on my short runs (one mile or so), I quickly realized that because of the shorter peak of Fiasp, I was less likely to have previous insulin activity drive me low during the run. Within the first handful of runs, I stopped eating a snack or some carbs before the run. I also stopped setting a super high target an hour before my run. I gradually moved into just avoiding >1.5u of insulin on board before short runs; and for longer runs, setting a target of ~110 about 30 minutes before I walked out the door, mostly to avoid any of that insulin activity dosed that would kick in right after I started running. (Keep in mind when I talk about setting targets: I’m using OpenAPS, my DIY closed loop system that does automatic insulin dosing; and for fellow DIY closed loop users, I’m also using exercise mode settings so I can set lower targets like 110 and the targets also automatically adjust my sensitivity and recalculate IOB accordingly. So without those settings, I’d probably set the target to 130 or so.)

And this has worked quite well for me.

Is it perfect? No, I do still go low sometimes..but probably <10% of my runs instead of 50% of them, which is a huge improvement. Additionally, because of having OpenAPS running to pick up the rebound, there’s not usually much of a rebound and resulting roller coaster like I would have in 2013. Additionally, because autosensitivity is running, it picks up within a few hours of any additional sensitivity to insulin, and I don’t have any overnight lows after running. Yay!

However, that all assumes I’m running at a normal-for-my-body or slower speed.

There’s a nice (annoying) phenomenon that if you sprint/run faster than your body can really handle, your liver is going to dump and your BG will spike as a result:

I didn’t ever notice this in 2013, but I’ve now run enough and at varying paces to really understand what my fitness level is, and see very obvious spikes due to surges like this when I’m sprinting too fast. Some days, if I run too fast (even for a mile), I’ll have a surge up to 180 or 200 mg/dL, and that’ll be higher than my BG is for the rest of that 24 hour period. Which is annoying. Funny, but annoying. Not a big deal, because after my run OpenAPS can take care of bringing my down safely.

But other than the running-too-fast-spikes, my BGs have been incredible during and following my runs. As I thought about contributing factors to what’s working well, this is what’s likely been contributing:

  • with a mix of Fiasp & another short-acting insulin, I’m less likely to have the ‘whoosh’ effect of any IOB
  • but I’m also not starting with much IOB, because I tend to run first thing, or several hours after a meal
  • and of course, I have a DIY closed loop that takes care of any post-run sensitivity and insulin adjustments automatically

As I thought more about how much I’ve been running first thing in the morning/day, and usually not eating breakfast, that made me start reading about fasted long runs, or glycogen depleted runs, or low carb runs. People call them all these things, and I’m putting them in the post for my fellow page-16-of-Google-seekers. I call it “don’t eat breakfast before you run” long runs.

Now, some caveats before I go further into detail about what’s been working for me:

  • Your Diabetes May Vary (YDMV). in fact, it will. and so will your fitness level. what works for you may not be this. what works for you will probably not work for me. So, use this as input as one more blog post that you’ve read about a potential method, and then tweak and try what works for you. And you do you.
  • I’m not doing low carb. (And different people have different definitions of low carb, but I don’t think I’m meeting any of the definitions). What I’m talking about is not eating breakfast, a snack, or a meal before my runs in the morning. When I return from runs, I eat lunch, or a snack/meal, and the rest of my day is the usual amount/type of food that I would eat. (And since I have celiac, often times my gluten free food can be higher carb than a typical diet may be. It depends on whether I’m eating at home or eating out.) So, don’t take away anything related to overall carb consumption, because I’m not touching that! That’s a different topic. (And YDMV there, too.)
  • What I’m doing doesn’t seem to match anything I’ve read for non-T1D runners and what they do (or at least, the ones who are blogging about it).

Most of the recommendations I’ve read for glycogen depletion runs is to only do it for a few of your long runs in a marathon training cycle; that you should still eat breakfast before a full marathon; and you should only do fasted/glycogen depletion for slow, easy long runs.

I’m not sure yet (again, not in a full marathon cycle training), but I actually think based on my runs to date that I will do ok (or better) if I start without breakfast, and take applesauce/gatorade every once in a while as I feel I need it for energy, and otherwise managing my BG line. If I start a downtick, I’d sip some carbs. If I started dropping majorly, I’d definitely eat more. But so far, managing BG rather than trying to prescriptively plan carbs (for breakfast, or the concept of 30-60 per hour), works a lot better for me.

Part of the no-breakfast-works-better-for-me might be because the longevity of insulin in your body is actually like 6 hours (or more). Most non-T1D runners talk about a meal 3 hours before the start of your race. And they’re right that the peak and the bulk of insulin would be gone by then, but you’d still have a fair bit of residual insulin active for the first several hours of your race, and the body’s increased sensitivity to that insulin during exercise is likely what contributes to a lot of low BGs in us T1 runners. There’s also a lot of talk about how fasting during training runs teaches your body to better burn fat; and how running your race (such as a marathon) where you do carb during the race (whether that’s to manage BGs or more proactively) will make your body feel better since it has more fuel than you’re used to. That’s probably true; but given the lower insulin action during a run (because you’ve been fasted, and you may be on a lower temp basal rate to start), you’re likely to have a larger spike from a smaller amount of carbs, so the carb-ing you do before or during these long runs or a marathon race may need to be lower than what a non-T1D might do.

tl;dr – running is going better for me and BG management has been easier; I’m going to keep experimenting with some fasted runs as I build up to longer mileage; and YDMV. Hope some of this was helpful, and if you’ve done no-breakfast-long-runs-or-races, I’d love to hear how it worked for you and what during-race fueling strategy you chose as a result!

More open innovation coming soon?

This is a big deal: JDRF just announced funding for companies to open up their device protocols, with an explicit mention of projects including OpenAPS.

This is something we’ve been asking companies for over many years, but even the most forward-thinking diabetes device companies are still limiting patients to read-only retrospective access to the patient’s own data. That’s a start, but it isn’t enough.  We need all device makers to take the next step toward full and open interoperability: participating in open-protocol development of pumps and AP systems. If funding from a major organization like JDRF is what will be needed to prioritize this, great: we’re really excited to see them doing so.

Many of us in the diabetes community have chosen to accept the risk of a flawed device, because of the net risk reduction -and quality of life improvements – that come from being able to DIY closed loop. But that doesn’t mean we’re 100% happy with that.

  • We shouldn’t have to bandaid our pumps – literally – with tape.
  • We shouldn’t have to buy them second hand.
  • We should be able to use in-warranty devices that aren’t physically broken.

In order to use our medical devices in the safest and most effective way possible, we need the ability to remotely and safely control our devices – and understand them – as we see fit.  That means the makers of the medical devices we rely on need to openly document the communications protocols their devices use, so that any informed patient, or any company or organization operating on their behalf, can safely interact with the device.

It’s a big deal for JDRF to put resources into helping companies figure out how to do this, and ease liability and regulatory concerns. Thanks to everyone who’s been a vocal advocate in the DIY community; in organizations like JDRF; and individuals advocating at the medical device companies as well.  And props to the FDA, who last month released official guidance encouraging device makers to “design their devices with interoperability as an objective” and “clearly specify the relevant functional, performance, and interface characteristics to the user.”

We all have the same goals – to make life better, and safer, for those of us living with type 1 diabetes. I’m excited to see more efforts like this that further align all of our activities toward these goals.

To the diabetes device companies: we’ve long said we are happy to help if you want to figure out how to do this. Hopefully, you already have ideas about how to do this smartly and safely. But if you need help, let us know – we’re happy to help, because #WeAreNotWaiting and neither should you.

 

How I change pump sites

Last year, I wrote about how I “pre-soak” CGM sensors for better first-day BGs. That’s something I started doing years ago whenever possible.

Similarly, in the last few years, I’ve also changed how I change my pump sites with similar goals of improved outcomes, whenever possible.

What I used to do (i.e. for 12+ years):

  • Pull out pump site
  • Take shower
  • Put in new pump site
  • If the pump site didn’t work, spend all night high, or the next hours high while I debated whether it was just “slow” or if I needed a second new site. Ugh.

What I decided to start doing and have done ever since (unless a site gets pulled out by accident):

  • On day 3 when I decide to change my pump site, I do not take my “old” pump site out before my shower.
  • After my shower, I leave in the old pump site and put the new pump site on. Which means I am wearing TWO pump sites.
  • Put the tubing on the new site etc. as expected. But because I have the old site on, if I start to see BGs creep up, I can do one of two things:
    • 1) Swap tubing back to old site, give a bolus or a prime on the old site, then switch tubing back to new site. (I do this if I think the new site is working but “slow”)
    • 2) Swap tubing back to old site, ditch the new site, and then insert a second “new” site (or wait until the next morning to do so when I feel like it)
  •  Otherwise, if BGs are fine, I pull the “old” site out once I confirm the new site is good to go.

Is this method perfect? Nope. Does it usually help a lot when I have a new site that is kinked or otherwise a dud? Yup.

To me, it’s worth keeping the old site on for a few (or even ~12) hours. I know many people may not like the idea of “wearing two sites”. But it’s not wearing two sites for 3 days. And if you find yourself having a lot of kinked sites – that’s why and when I switched over to this approach.

YDMV, always. But hope this (post-soaking?) of pump sites, like the idea of pre-soaking CGM sensors, is helpful to someone else.

Why a non-academic (patient) publishes in academic journals

Today I was able to share that my Letter to the Editor was published in the Journal of Diabetes Science and Technology. It’s on why we need to set expectations to help patients successfully adopt hybrid closed loop/artificial pancreas/automated insulin delivery system technology. (You can read it via image copies in the first link.)

JDST_screenshot_LTE_expectationsI’ve published a few times in academic journals. Last year, Scott and I published another Letter to the Editor in JDST with the OpenAPS outcomes study we had presented at the 2016 ADA Scientific Sessions conference.

But, I’m sure people are wondering why I choose to do so – especially as I am 1) a patient and 2) a non-academic. (Although in case you missed it – I’m now the Principal Investigator on a grant-funded study!)

While there are many healthcare providers, researchers, industry employees, FDA staff, etc. who read blogs like this and are up to speed on the bleeding edge of diabetes technology… there are easily 10x the number that do not.

And if they don’t know about the existence of this world, they won’t know about the valuable lessons we’re learning and won’t be able to share those lessons and knowledge with other healthcare providers and the patients that they treat.

So, in my pursuit to find more ways to share knowledge from our community with the rest of the diabetes community, this is why we submit abstracts for posters and presentations to conferences like ADA’s Scientific Sessions. Our abstracts are evaluated just like the abstracts from traditional healthcare providers (as far as they can tell, I’m just another academic, albeit one with fewer credentials ;)), and I’m proud that they’re evaluated and deemed worthy of poster presentations alongside mainstream researchers. Ditto for our written publications, whether they be letters to the editor or other types of articles submitted to journals and publications.

We need to find more ways to share and distribute knowledge with the “traditional” medical and academic research world. And I’d love to do more – so please share ideas if you have them. And if you’re someone who bridges the gap to the traditional world, I appreciate your help sharing these types of articles and conversations with your colleagues.

What I wish CDEs (diabetes educators) and other HCPs knew about DIY and other diabetes tech (#OpenAPS or otherwise)

I had the awesome opportunity to present at #AADE17, the annual education meeting for the American Association of Diabetes Educators, this past weekend. My topic was about OpenAPS and DIY diabetes… which really translates to some broader things I want all educators and HCPs to know about patients and technology, whether it’s DIY or just unknown to them. Unfortunately AADE didn’t record or livestream my session, so I wanted to write up a summary of the content here.

(If you’re new to this blog/me/OpenAPS, you can also watch this June 2017 TEDX talk where I share some of the story of how I ended up with a DIY artificial pancreas and how the OpenAPS community came to be; or this older talk from OSCON 2016 as well. As always, if you’re curious to learn more about OpenAPS or wondering how to build your own DIY artificial pancreas, OpenAPS.org is the first place to learn more!)

Diabetes is hard. Even if you are privileged to have access to insulin, education, and technology – it can still be so incredibly hard to get it right. And even if you do everything “right”, the outcomes will still vary. And after all, the devices themselves are not perfect, and we still have diabetes.

The lack of varying alarms and the unchangeable volume is what led me to create DIYPS (my open loop and louder alarm system), and the same frustration with lack of data access and visualization led John Costik, Lane Desborough, Ben West, and so many others to explore creating other DIY tools, such as Nightscout. And thanks to social media, we all didn’t have to create in a vacuum: we can share code (this is what open source means) and insight through social media, and build upon each other’s work. As a result, these collaborations, sharing, and iterative development is how OpenAPS, the open source artificial pancreas system movement, was created.

I tweet and talk and share frequently about how great it is having #OpenAPS in my life. Norovirus? No problem. Changes in sensitivity due to exercise? Not the biggie it used to be.

However, this technology is by no means a cure. It still requires work on the part of the person with diabetes. We still have to:

  • Change pump sites
  • Change CGM sensors
  • Calibrate regularly
  • Deal with bonked pump sites and sensors that fall out

And also, given the speed of insulin, most people are still going to engage with the system for some kind of meal bolus or announcement. This is why it’s called “hybrid” closed loop technology. (However, depending on the sophistication of the technology, you start to get to be able to choose what you want to optimize for and the behaviors you want to choose to do less of, which is great.)

In some cases, we humans know more than the technology: such as when a meal is going to happen/is coming, and when exercise is going to happen. So it’s nice to be able to interoperate your devices and be able to use your phone, watch, computer, etc. to be able to tell the system what to do differently (i.e. set higher targets in the case of activity, or lower targets to achieve “eating soon” mode , or in the case of waking up).

But in a LOT of cases, it’s tiring for the human to have to think about all the things. Such as whether a pump site is slowly dying and causing apparent insulin resistant. Or such as when you’re more sensitive 12-24 hours after exercise. Or during menstrual cycles. Or when sick. Or during a growth spurt. Or during jet lag. Or during a trip where you can’t find anything to eat. Etc. It’s a lot for us PWD’s to track, and this is where computers come in handy. Things like autosensitivity in OpenAPS to automatically detect changes in sensitivity and adjust the variables for calculations automatically; and autotune, to track the data of what’s actually happening and make recommendations for changing your underlying pump settings (ISF, carb ratio, and basal rates).

And how has this technology been developed by patients? Iteratively, as we figure out what’s possible. It’s not about boiling the ocean; it’s about approaching problems bit by bit as we have new tools to solve them, or new people with energy to think about the problem in different ways. It’s like thinking about getting a car – you wouldn’t expect the manufacturer to sell bits and pieces of the car frame, and you don’t really expect medical device manufacturers to sell bits and pieces of a pump or other device. However, patients are closest to the REAL problems in living with diabetes. Instead of a “car”, they’re looking for solutions for getting from point A to point B. And so in the car analogy, that means starting with a skateboard, scooter, or bike – and ending up with a car is great, but the car is not the point.

So no, any piece of technology isn’t going to be a cure or solve all problems or work perfectly for everyone. But that is true whether it’s DIY or a commercial tool: one size certainly does not fit all. And patients are individuals with their own lives and their own challenges with diabetes, with different motivations around what aspects of life with diabetes feel like friction and what they feel equipped to tackle and solve.

So, here’s some of what’s on my list for what I’d like CDE’s and other HCP’s to know as a result of the proliferation of technology around diabetes:

  • Yes, DIY tech is often off label. But that’s ok – it just means it’s off label; it doesn’t prevent you from listening to why patients are using it, what we think it’s doing for us, and it doesn’t prevent you from asking questions, learning more, or still advising patients.
  • Don’t make us switch providers by refusing to discuss it or listen to it, just because it’s new/different/you don’t understand it. (By the way: we don’t expect you to understand all possible technology! You can’t be experts on everything, but that doesn’t mean shunning what you don’t know.)
  • You get to take advantage of the opportunity when someone brings something new into the office – it’s probably the first of many times you’ll see it, and the first patient is often on the bleeding edge and deeply engaged and understands what they’re using, and open to sharing what they’ve learned to help you, so you can also help other patients!
  • You also get to take advantage of the open source community. It’s open, not just for patients to use, but for companies, and for CDEs and other HCPs as well. There are dozens if not hundreds of active people on Twitter, Facebook, blogs, forums, and more who are happy to answer questions and help give perspective and insight into why/how/what things are.
  • Don’t forget – many of the DIY tools provide data and insight that currently don’t exist in any traditional and/or commercially and/or FDA-approved tool. Take autotune for example – there’s nothing else out there that we know of that will tune basal rates, ISF, and carb ratio for people with pumps. And the ability of tools like Nightscout reports to show data from a patient’s disparate devices is also incredibly helpful for healthcare providers and educators to use to help patients.

And one final point specific to hybrid closed loop technology: this technology is going to solve a lot of problems and frustrations. But, it may mean that patients will shift the prioritization of other quality of life factors like ease of use over older, traditionally learned diabetes behaviors. This means things like precise carb counting may go by the wayside for general meal size estimations, because the technology yields similar outcomes. Being aware of this will be important for when CDE’s are working with patients; knowing what the patterns of behaviors are and knowing where a patient has shifted their choices will be helpful for identifying what behaviors can be adapted to yield different outcomes.

I think the increase in technology (especially various types of closed loops, DIY and commercial) will yield MORE work for CDE’s and HCP’s, rather than less. This means it’s even more important for them to get up to speed on current and evolving technology – because it’s by no means going away. And the first wave of DIY’ers have a lot we can share and teach not just other patients, but also CDE’s. So again, many thanks to AADE for the opportunity to share some of this perspective at #AADE17, and thanks to everyone for the engagement during and after the session!

This. Matters. (Why I continue to work on #OpenAPS, for myself and for others)

If you give a mouse a cookie or give a patient their data, great things will happen.

First, it was louder CGM alarms and predictive alerts (#DIYPS).

Next, it was a basic hybrid closed loop artificial pancreas that we open sourced so other people could build one if they wanted to (#OpenAPS, with the oref0 basic algorithm).

Then, it was all kinds of nifty lessons learned about timing insulin activity optimally (do eating soon mode around an hour before a meal) and how to use things like IFTTT integration to squash even the tiniest (like from 100mg/dL to 140mg/dL) predictable rises.

It was also things like displays, button, widgets on the devices of my choice – ranging from being able to “text” my pancreas, to a swipe and button tap on my phone, to a button press on my watch – not to mention tinier sized pancreases that fit in or clip easily to a pocket.

Then it was autosensitivity that enabled the system to adjust to my changing circumstances (like getting a norovirus), plus autotune to make sure my baseline pump settings were where they needed to be.

And now, it’s oref1 features that enable me to make different choices at every meal depending on the social situation and what I feel like doing, while still getting good outcomes. Actually, not good outcomes. GREAT outcomes.

With oref0 and OpenAPS, I’d been getting good or really good outcomes for 2 years. But it wasn’t perfect – I wasn’t routinely getting 100% time in range with lower end of the range BG for a 24hour average. ~90% time in range was more common. (Note – this time in range is generally calculated with 80-160mg/dL. I could easily “get” higher time in range with an 80-180 mg/dL target, or a lot higher also with a 70-170mg/dL target, but 80-160mg/dL was what I was actually shooting for, so that’s what I calculate for me personally). I was fairly happy with my average BGs, but they could have been slightly better.

I wrote from a general perspective this week about being able to “choose one” thing to give up. And oref1 is a definite game changer for this.

  • It’s being able to put in a carb estimate and do a single, partial bolus, and see your BG go from 90 to peaking out at 130 mg/dL despite a large carb (and pure ballpark estimate) meal. And no later rise or drop, either.
  • It’s now seeing multiple days a week with 24 hour average BGs a full ~10 or so points lower than you’re used to regularly seeing – and multiple days in a week with full 100% time in range (for 80-160mg/dL), and otherwise being really darn close to 100% way more often than I’ve been before.

But I have to tell you – seeing is believing, even more than the numbers show.

I remember in the early days of #DIYPS and #OpenAPS, there were a lot of people saying “well, that’s you”. But it’s not just me. See Tim’s take on “changing the habits of a lifetime“. See Katie’s parent perspective on how much her interactions/interventions have lessened on a daily basis when testing SMB.

See this quote from Matthias, an early tester of oref1:

I was pretty happy with my 5.8% from a couple months of SMB, which has included the 2 worst months of eating habits in years.  It almost feels like a break from diabetes, even though I’m still checking hourly to make sure everything is connected and working etc and periodically glancing to see if I need to do anything.  So much of the burden of tight control has been lifted, and I can’t even do a decent job explaining the feeling to family.

And another note from Katie, who started testing SMB and oref1:

We used to battle 220s at this time of day (showing a picture flat at 109). Four basal rates in morning. Extra bolus while leaving house. Several text messages before second class of day would be over. Crazy amount of work [in the morning]. Now I just have to brush my teeth.

And this, too:

I don’t know if I’ve ever gone 24 hours without ANY mention of something that was because of diabetes to (my child).

Ya’ll. This stuff matters. Diabetes is SO much more than the math – it’s the countless seconds that add up and subtract from our focus on school/work/life. And diabetes is taking away this time not just from a person with diabetes, but from our parents/spouses/siblings/children/loved ones. It’s a burden, it’s stressful…and everything we can do matters for improving quality of life. It brings me to tears every time someone posts about these types of transformative experiences, because it’s yet another reminder that this work makes a real difference in the real lives of real people. (And, it’s helpful for Scott to hear this type of feedback, too – since he doesn’t have diabetes himself, it’s powerful for him to see the impact of how his code contributions and the features we’re designing and building are making a difference not just to BG outcomes.)

Thank you to everyone who keeps paying it forward to help others, and to all of you who share your stories and feedback to help and encourage us to keep making things better for everyone.

 

Write It Do It: Tips for Troubleshooting DIY Diabetes Devices (#OpenAPS or otherwise)

When I was in elementary school, I did Science Olympiad. (Are you surprised? Once a geek, always a geek…) One of my favorite “events” was “Write It Do It”, where one person would get a sculpture/something constructed (could be Legos, could be other stuff) and you had to write down instructions for telling someone else how to build it. Your partner got your list of instructions, the equipment, and was tasked with re-building the structure.

Building open source code and tools is very similar, now that I look back on the experiences of having built #DIYPS and then working on #OpenAPS. First step? Build the structure. Second step? Figure out how to tell someone ELSE how to do it. (That’s what the documentation is). But then when someone takes the list of parts and your instructions off elsewhere, depending on how they interpreted the instructions…it can end up looking a little bit different. Sometimes that’s ok, if it still works. But sometimes they skip a step, or you forget to write down something that looks obvious to you (but leaves them wondering how one part got left out) – and it doesn’t work.

Unlike in Science Olympiad, where you were “scored” on the creation and that was that, in DIY diabetes this is where you next turn to asking questions and troubleshooting about what to change/fix/do next.

But, sometimes it’s hard.

If you’re the person building a rig:

  • You know what you’re looking at, what equipment you used to get here, what step you’re on, what you’ve tried that works and what hasn’t worked.
  • You either know “it doesn’t work” or “I don’t know what to do next.”

If you’re the troubleshooter:

  • You only know generally how it can/should work and what the documentation says to do; but you only know as much about the specific problem is shared with you in context of a question.

As someone who spends a lot of time in the troubleshooter role these days, trying to answer questions or assist people in getting past where they’re stuck, here are my tips to help you if you’re building something DIY and are stuck.

Tips_online_troubleshooting_DIY_diabetes_DanaMLewis

DO:

  1. Start by explaining your setup. Example: “I’m building an Edison/Explorer Board rig, and am using a Mac computer to flash my Edison.”
  2. Explain the problem as specifically as you can. Example: “I am unable to get my Edison flashed with jubilinux.”
  3. Explain what step you’re stuck on, and in which page/version of the docs. Example: “I am following the Mac Edison flashing instructions, and I’m stuck on step 1-4.” Paste a URL to the exact page in the docs you’re looking at.  Clarify whether your problem is “it doesn’t work” or “I don’t know what to do next.”
  4. Explain what it’s telling you and what you see. Pro tip: Copy/paste the output that the computer is telling you rather than trying to summarize the error message. Example: “I can’t get the login prompt, it says “can’t find a PTY”.”
    (This is ESPECIALLY important for OpenAPS’ers who want help troubleshooting logs when they’ve finished the setup script – the status messages in there are very specific and helpful to other people who may be helping you troubleshoot.)
  5. Be patient! You may have tagged someone with an @mention; and they may be off doing something else. But don’t feel like you must tag someone with an @mention – if you’re posting in a specific troubleshooting channel, chances are there are numerous people who can (and will) help you when they are in channel and see your message.
  6. Be aware of what channel you’re in and pros/cons for what type of troubleshooting happens where.
    My suggestions:

    1. Facebook – best for questions that don’t need an immediate fix, or are more experience related questions. Remember you’re also at the mercy of Facebook’s algorithm for showing a post to a particular group of people, even if someone’s a member of the same group. And, it’s really hard to do back-and-forth troubleshooting because of the way Facebook threads posts. However, it IS a lot easier to post a picture in Facebook.
    2. Gitter – best for detailed, and hard, troubleshooting scenarios and live back-and-forth conversations. It’s hard to do photos on the go from your mobile device, but it’s usually better to paste logs and error output messages as text anyway (and there are some formatting tricks you can learn to help make your pasted text more readable, too). Those who are willing to help troubleshoot will generally skim and catch up on the channel when they get back, so you might have a few hours delay and get an answer later, if you still haven’t resolved or gotten an answer to your question from the people in channel when you first post.
    3. Email groups – best for if no one in the other channels knows the questions, or you have a general discussion starter that isn’t time-constrained
  7. Start with the basic setup, and come back and customize later. The documentation is usually written to support several kinds of configurations, but the general rule of thumb is get something basic working first, and then you can come back later and add features and tweaks. If you try to skip steps or customize too early, it makes it a lot harder to help troubleshoot what you’re doing if you’re not exactly following the documentation that’s worked for dozens of other people.
  8. Pay it forward. You may not have a certain skill, but you certainly have other skills that can likely help. Don’t be afraid to jump in and help answer questions of things you do know, or steps you successfully got through, even if you’re not “done” with your setup yet. Paying it forward as you go is an awesome strategy J and helps a lot!

SOME THINGS TO TRY TO AVOID:

  1. Avoid vague descriptions of what’s going on, and using the word “it”. Troubleshooter helpers have no idea which “it” or what “thing” you’re referring to, unless you tell them. Nouns are good :) . Saying “I am doing a thing, and it stopped working/doesn’t work” requires someone to play the game of 20 questions to draw out the above level of detail, before they can even start to answer your question of what to do next.
  2. Don’t get upset at people/blame people. Remember, most of the DIY diabetes projects are created by people who donated their work so others could use it, and many continue to donate their time to help other people. That’s time away from their families and lives. So even if you get frustrated, try to be polite. If you get upset, you’re likely to alienate potential helpers and revert into vagueness (“but it doesn’t work!”) which further hinders troubleshooting. And, remember, although these tools are awesome and make a big difference in your life – a few minutes, or a few hours, or a few days without them will be ok. We’d all prefer not to go without, which is why we try to help each other, but it’s ok if there’s a gap in use time. You have good baseline diabetes skills to fall back on during this time. If you’re feeling overwhelmed, turn off the DIY technology, go back to doing things the way you’re comfortable, and come back and troubleshoot further when you’re no longer feeling overwhelmed.
  3. Don’t go radio silent: report back what you tried and if it worked. One of the benefits of these channels is many people are watching and learning alongside you; and the troubleshooters are also learning, too. Everything from “describing the steps ABC way causes confusion, but saying XYZ seems to be more clear” and even “oh wow, we found a bug, 123 no longer is ideal and we should really do 456.” Reporting back what you tried and if it resolved your issue or not is a very simple way to pay it forward and keep the community’s knowledge base growing!
  4. Try not to get annoyed if someone helping out asks you to switch channels to continue troubleshooting. Per the above, sometimes one channel has benefits over the other. It may not be your favorite, but it shouldn’t hurt you to switch channels for a few minutes to resolve your issue.
  5. Don’t wait until you’re “done” to pay it forward. You definitely have things to contribute as you go, too! Don’t wait until you’re done to make edits (PRs) to the documentation. Make edits while they’re fresh in your mind (and it’s a good thing to do while you’re waiting for things to install/compile ;)).

These are the tips that come to mind as I think about how to help people seek help more successfully online in DIY diabetes projects. What tips would you add?

The only thing to fear is fear itself

(Things I didn’t realize were involved in open-sourcing a DIY artificial pancreas: writing “yes you can” style self-help blog posts to encourage people to take the first step to TRY and use the open source code and instructions that are freely available….for those who are willing to try.)

You are the only thing holding yourself back from trying. Maybe it’s trying to DIY closed loop at all. Maybe it’s trying to make a change to your existing rig that was set up a long time ago.  Maybe it’s doing something your spouse/partner/parent has previously done for you. Maybe it’s trying to think about changing the way you deal with diabetes at all.

Trying is hard. Learning is hard. But even harder (I think) is listening to the negative self-talk that says “I can’t do this” and perhaps going without something that could make a big difference in your daily life.

99% of the time, you CAN do the thing. But it primarily starts with being willing to try, and being ok with not being perfect right out of the gate.

I blogged last year (wow, almost two years ago actually) about making and doing and how I’ve learned to do so many new things as part of my OpenAPS journey that I never thought possible. I am not a traditional programmer, developer, engineer, or anything like that. Yes, I can code (some)…because I taught myself as I went and continue to teach myself as I go. It’s because I keep trying, and failing, then trying, and succeeding, and trying some more and asking lots of questions along the way.

Here’s what I’ve learned in 3+ years of doing DIY, technical diabetes things that I never thought I’d be able to accomplish:

  1. You don’t need to know everything.
  2. You really don’t particularly need to have any technical “ability” or experience.
  3. You DO need to know that you don’t know it all, even if you already know a thing or two about computers.
  4. (People who come into this process thinking they know everything tend to struggle even more than people who come in humble and ready to learn.)
  5. You only need to be willing to TRY, try, and try again.
  6. It might not always work on the first try of a particular thing…
  7. …but there’s help from the community to help you learn what you need to know.
  8. The learning is a big piece of this, because we’re completely changing the way we treat our diabetes when we go from manual interventions to a hybrid closed loop (and we learned some things to help do it safely).
  9. You can do this – as long as you think you can.
  10. If you think you can’t, you’re right – but it’s not that you can’t, it’s that you’re not willing to even try.

This list of things gets proved out to me on a weekly basis.

I see many people look at the #OpenAPS docs and think “I can’t do that” (and tell me this) and not even attempt to try.

What’s been interesting, though, is how many non-technical people jumped in and gave autotune a try. Even with the same level of no technical ability, several people jumped in, followed the instructions, asked questions, and were able to spin up a Linux virtual machine and run beta-level (brand new, not by any means perfect) code and get output and results. It was amazing, and really proved all those points above. People were deeply interested in getting the computer to help them, and it did. It sometimes took some work, but they were able to accomplish it.

OpenAPS, or anything else involving computers, is the same way. (And OpenAPS is even easier than most anything else that requires coding, in my opinion.) Someone recently estimated that setting up OpenAPS takes only 20 mouse clicks; 29 copy and paste lines of code; 10 entries of passwords or logins; and probably about 15-20 random small entries at prompts (like your NS site address or your email address or wifi addresses). There’s a reference guide, documentation that walks you through exactly what to do, and a supportive community.

You can do it. You can do this. You just have to be willing to try.

OpenAPS feature development in 2016

It’s been two years since my first DIY closed loop and almost two years since OpenAPS (the vision and resulting ecosystem to help make artificial pancreas technology, DIY or otherwise, more quickly available to more people living with diabetes) was created.  I’ve spent time here (on DIYPS.org) talking about a variety of things that are applicable to people who are DIY closed looping, but also focusing on things (like how to “soak” a CGM sensorr and how to do “eating soon” mode) that may be (in my opinion) universally applicable.

OpenAPS feature development in 2016

However, I think it’s worth recapping some of the amazing work that’s been done in the OpenAPS ecosystem over the past year, sometimes behind the scenes, because there are some key features and tools that have been added in that seem small, but are really impactful for people living with DIY closed loops.

  1. Advanced meal assist (aka AMA)
    1. This is an “advanced feature” that can be turned on by OpenAPS users, and, with reliable entry of carb information, will help the closed loop assist sooner with a post-meal BG rise where there is mis-timed or insufficient insulin coverage for the meal. It’s easy to use, because the PWD only has to put carbs and a bolus in – then AMA acts based on the observed absorption. This means that if absorption is delayed because you walk home from dinner, have gastroparesis, etc., it backs off and wait until the carbs actually start taking effect (even if it is later than the human would expect).
    2. We also now have the purple line predictions back in Nightscout to visualize some of these predictions. This is a hallmark of the original iob-cob branch in Nightscout that Scott and I originally created, that took my COB calculated by DIYPS and visualized the resulting BG graph. With AMA, there are actually 3 purple lines displayed when there is carb activity. As described here in the OpenAPS docs, the top purple line assumes 10 mg/dL/5m carb (0.6 mmol/L/5m) absorption and is most accurate right after eating before carb absorption ramps up. The line that is usually in the middle is based on current carb absorption trends and is generally the most accurate once carb absorption begins; and the bottom line assumes no carb absorption and reflects insulin only. Having the 3 lines is helpful for when you do something out of the ordinary following a meal (taking a walk; taking a shower; etc.) and helps a human decide if they need to do anything or if the loop will be able to handle the resulting impact of those decisions.
  2. The approach with a “preferences” file
    1. This is the file where people can adjust default safety and other parameters, like maxIOB which defaults to 0 during a standard setup, ultimately creating a low-glucose-suspend-mode closed loop when people are first setting up their closed loops. People have to intentionally change this setting to allow the system to high temp above a netIOB = 0 amount, which is an intended safety-first approach.
    2. One particular feature (“override_high_target_with_low”) makes it easier for secondary caregivers (like school nurses) to do conservative boluses at lunch/snack time, and allow the closed loop to pick up from there. The secondary caregiver can use the bolus wizard, which will correct down to the high end of the target; and setting this value in preferences to “true” allows the closed loop to target the low end of the target. Based on anecdotal reports from those using it, this feature sounds like it’s prevented a lot of (unintentional, diabetes is hard) overreacting by secondary caregivers when the closed loop can more easily deal with BG fluctuations. The same for “carbratio_adjustmentratio”, if parents would prefer for secondary caregivers to bolus with a more conservative carb ratio, this can be set so the closed loop ultimately uses the correct carb amount for any needed additional calculations.
  3. Autosensitivity
    1. I’ve written about autosensitivity before and how impressive it has been in the face of a norovirus and not eating to have the closed loop detect excessive sensitivity and be able to deal with it – resulting in 0 lows. It’s also helpful during other minor instances of sensitivity after a few active days; or resistance due to hormone cycles and/or an aging pump site.
    2. Autosens is a feature that has to be turned on specifically (like AMA) in order for people to utilize it, because it’s making adjustments to ISF and targets and looping accordingly from those values. It also have safety caps that are set and automatically included to limit the amount of adjustment in either direction that autosens can make to any of the parameters.
  4. Tiny rigs
    1. Thanks to Intel, we were introduced to a board designer who collaborated with the OpenAPS community and inspired the creation of the “Explorer Board”. It’s a multipurpose board that can be used for home automation and all kinds of things, and it’s another tool in the toolbox of off-the-shelf and commercial hardware that can be used in an OpenAPS setup. It’s enabled us, due to the built in radio stick, to be able to drastically reduce the size of an OpenAPS setup to about the size of two Chapsticks.
  5. Setup scripts
    1. As soon as we were working on the Explorer Board, I envisioned that it would be a game changer for increasing access for those who thought a Pi was too big/too burdensome for regular use with a DIY closed loop system. I knew we had a lot of work to do to continue to improve the setup process to cut down on the friction of the setup process – but balancing that with the fact that the DIY part of setting up a closed loop system was and still is incredibly important. We then worked to create the oref0-setup script to streamline the setup process. For anyone building a loop, you still have to set up your hardware and build a system, expressing intention in many places of what you want to do and how…but it’s cut down on a lot of friction and increased the amount of energy people have left, which can instead be focused on reading the code and understanding the underlying algorithm(s) and features that they are considering using.
  6. Streamlined documentation
    1. The OpenAPS “docs” are an incredible labor of love and a testament to dozens and dozens of people who have contributed by sharing their knowledge about hardware, software, and the process it takes to weave all of these tools together. It has gotten to be very long, but given the advent of the Explorer Board hardware and the setup scripts, we were able to drastically streamline the docs and make it a lot easier to go from phase 0 (get and setup hardware, depending on the kind of gear you have); to phase 1 (monitoring and visualizing tools, like Nightscout); to phase 2 (actually setup openaps tools and build your system); to phase 3 (starting with a low glucose suspend only system and how to tune targets and settings safely); to phase 4 (iterating and improving on your system with advanced features, if one so desires). The “old” documentation and manual tool descriptions are still in the docs, but 95% of people don’t need them.
  7. IFTTT and other tool integrations
    1. It’s definitely worth calling out the integration with IFTTT that allows people to use things like Alexa, Siri, Pebble watches, Google Assistant (and just about anything else you can think of), to easily enter carbs or “modes” for OpenAPS to use, or to easily get information about the status of the system. (My personal favorite piece of this is my recent “hack” to automatically have OpenAPS trigger a “waking up” mode to combat hormone-driven BG increases that happen when I start moving around in the morning – but without having to remember to set the mode manually!)

..and that was all just things the community has done in 2016! :) There are some other exciting things that are in development and being tested right now by the community, and I look forward to sharing more as this advanced algorithm development continues.

Happy New Year, everyone!