Not bolusing for meals (Fiasp, 0.6.0 algorithm in oref0 dev branch, and more)

I tweeted last week+, “I just realized I’ve now gone about 3 weeks without meal bolusing.” That means just a meal announcement (i.e. carb entry estimate, a la 30 carbs or 60 carbs or whatever, based on my IFTTT buttons). No manual bolus.

I kind of keep waiting for the other shoe to drop, because it sounds to good to be true. I’m sure you’re skeptical reading this.

I bet she’s doing SOME bolus.

Well, she must not be eating any carbs.

She must be having worse outcomes, bad post-meal BGs, etc.

Nope, nope, and nope.

  • While I started testing this new set of features with partial boluses and worked my way down (see more below on the testing topic), I’m now literally doing no manual meal bolus. I start eating, and press one button on my watch for a carb estimate entry (that via IFTTT goes to Nightscout and my rig).
  • I eat carbs. I’ve eaten 120 grams of carbs of gluten free biscuits and gravy; 60-90 grams of pasta; dinner followed by a few gluten free cookies, etc.
  • More nuanced details below, but:
    • My 70-180 time in range has stayed the same (93+%) compared to the versions I was testing before with manual meal boluses.
    • My 70-150 and 80-160 time in ranges have decreased slightly compared to manual meal boluses, but…
    • My average blood sugar has actually dropped down (as has my a1c to match).
    • (So this means I’m having a few more spikes above 160, usually topping off in 160-170 whereas before my manual meal boluses would have me top off around 150, when all was well.)

Also note – no eating soon required. No early bolus or pre-bolus. Just single button press as I stick food in my mouth.


(See where I said, waiting for the other shoe to drop?)

That’s why I waited a while to even tweet about it. Maybe it’s a fluke. Maybe it won’t work for other people. Maybe, maybe, maybe. Who knows. It’s still fairly early to tell, but as other people are beginning to test the current dev branch of oref0 with 0.6.0-related features, other people are starting to see improvements as well. (And that could be some of the many other features we are adding to 0.6.0, ranging from exponential curves for insulin activity, to allowing SMBs to do more, to carb-ratio-tuned-autosensitivity, to huge autotune improvements, etc.) 

So while I don’t want to over-hype – and never do, what works for me will not work for everyone – I do want to share my cautious excitement over continuing to be able to push the envelope on algorithms and what might be possible outcome-wise for this kind of technology.

Here’s what is enabling me to be in the no-bolus zone for now well over a month, with still (to me) great outcomes worth the tradeoffs described above:

  1. Faster insulin. Thanks to our lovely looping friends in Germany/Austria, we came back from Europe with a few vials of Fiasp to try. I was HIGHLY skeptical about this. Some of our European friends saw great results right away, others didn’t. I didn’t get great results on it at first. Some of that may be due to natural changes between insulin types and not knowing exactly how to adjust my manual bolus strategy to the faster insulin action, but until we did some code changes to allow SMB‘s to do more and added some other features to what’s now 0.6.0, I wasn’t thrilled and in fact after about two weeks of it was about to switch off of it. So that brings me to #2.
  2. More improvements to the algorithm, which is now what will become the 0.6.0 release of oref0. There’s a whole lot of stuff packed in there. Exponential curves. Different carb absorption decay calculations. Allowing SMB to do more. Additional safety guards since we ramped SMB up.

How we started testing no-bolus approach:

  • I have always known that about 6u of insulin (thanks to testing dating back to my early DIYPS days, many many many moons ago) is about as much as I should bolus at any time. So, even if I ate 120 carbs, I usually did about a 6u bolus up front, and let the rig pick up the rest as needed over more hours. I started doing ~75% or something like that of boluses, based on wherever I felt like rounding to with my easy bolus buttons.
  • Whether I did 75% or 100%, I didn’t see a ton of difference at first…
  • I took a leap and tried no-bolus with some SMB adjustments to allow it to ramp up faster with carb entry. Behaviorally, I find it a lot easier to do nothing 😀 vs. figure out the right amount of up front bolus. And outcomes wise (see above) it was very similar.

It definitely was an interesting approach to test. Between the Fiasp and the no-bolus up front, in some meals it matched really well and I had practically no rise. Due to incoming netIOB, food type, etc, sometimes I did have a rise – but while it spiked slightly higher (160-170 usually vs my earlier 150s with manual bolus), it was only up there for 2-3 data points and then came sharply down, leveling out smoothly in my preferred post-meal range. So an important lesson I learned was not to over-react to just the BG curve going up, without looking at the predictions to see where I was going to come just back down. (And as I had more than one meal where the spike and drop back to normal happened, it was very easy to adjust to the BG graph and not get that emotional tug to “do more” with a quick short rise like that).

Obviously, starting BG makes a difference. I’m usually starting <130 mg/dL when I see these spikes cap out at 170 or lower. I’ve started higher, and seen higher rises, too. They’re not all perfect: with occasional pump site issues, carb underestimates, unplanned carb stacking, and all the randomness of diabetes and a non-structured lifestyle (including live-testing bleeding edge algorithm changes), I’ve spent 12% of the last month >160 mg/dL, which is about the same as the 3 months before that. But in most cases (I’d say 95%), the no-bolus approach has actually yielded better outcomes than I expected AND has avoided post-meal lows better than I would have achieved with a manual bolus.

This is huge when you think about the QOL aspect of not having to do as much math at a meal; and when you think about all the complicating factors related to food – timing (do you bolus when you order, or when the food arrives, or earlier than that?), and the gluten factor. I have celiac disease, so if I’m eating out (which we do a lot, and especially since I travel frequently), bolusing prior to setting eyes on the food (knowing they didn’t plate it with bread, causing them to have to go back and start all over again) just isn’t smart. That’s why eating soon historically worked so well for me vs. traditional pre-boluses, because I could set the target entering the restaurant, bolus when I laid eyes on my hopefully safe food, and get reasonable (150 topping out) meal outcomes.

It also worked really well in the case where a restaurant cooked my gluten free pasta in the same pasta cooker and water as regular pasta, but didn’t inform me until after I found stray gluten noodles in the bottom of my pasta dish and started asking how that was possible since they (used to) do gluten free well. (Now, I pick up heaps of pasta, and sort pasta noodles one by one to make sure they all match before ever eating gluten free pasta. It makes waiters look at you very worriedly as you wave pasta around in the air, but better safe than glutened (again).) So, I was majorly glutened, and my digestion system was all out of sorts (isn’t that a nice polite way to describe getting glutened?) for many days, which of course impacted BG and insulin right then and for the days afterward. But because I had done carb entry and no-bolus, I was able to edit the carb entry down, and I didn’t have that much insulin stacked, and didn’t end up low after glutening, which is usually what happens.

Is that a super regular situation for most people? No. But it was super nice. And also helped me face pasta again last night, so I could put in a (very low in case of gluten) carb estimate, match my noodles, eat pasta, and let the SMBs ramp up to match absorption. It works very well for me.

Whether you have celiac or not, for many reasons (insert yours here), it’s nice to not to have to commit to the bolus up front. It’s closer to approaching what I think non-PWDs do at mealtimes: just eat.

(I haven’t done much testing (yet? TBD) for no-carb-entry and no-meal-bolus scenario, I expect I would have higher spikes but would be interesting to see if it would still come down reasonably fast. Probably wouldn’t be my go-to strategy because I don’t mind a general meal size estimate one button push, but would be nice to know what that curve shape would look like. If I test that, it’ll start with small snacks and ramp my way up.)

The questions I always get:

    A: Caution: like all things OpenAPS but especially always true for the development branch, 0.6.0 is NOT released yet to master and is still highly experimental. I wouldn’t install dev unless you want to pay lots of close attention to it, and are willing to update multiple times over the course of the week, because Scott and I are merging features and tweaks almost daily to it.

    Got the disclaimers down? Ok. It’s in the dev branch of oref0. You should read this PR with notes on some more detail of what’s included, but you should also review the code diff to see all that’s changed, because it’s not all documented yet. Also, follow the instructions at the bottom to be able to install it without git. Hop into Gitter if you have questions about it!

    (Big huge thanks to folks like Tim and Matthias for early testing of 0.6.0; and to Tim for writing up about the initial rounds of 0.6.0-dev here (note that we’ve made further changes since this post), and others who’ve been testing & providing feedback and input into the dev branch!)

  2. Q: When will this get “released” to master?
    A: It depends. This is still a highly active dev branch, and we’re making a lot of changes and tweaking and testing things. The more people who test now and provide feedback will enable us to get to the final “prepare for release” testing stage. Lots and lots of testing, and things depend on how much existing needs tweaked, and what else we decide should go with this release. So, there’s never any specific release date.

  3. Q: What is Fiasp?
    A: Faster acting insulin that was only approved in Europe and Canada…until today. Convenient timing. I asked a PR person who messaged me about it, and they said it’s estimated to be available in U.S. pharmacies by late December/earlier Q1. As previously stated, available elsewhere in other parts of the world.

    Fiasp peaks sooner (say, ~45 minutes) with the same tail as everything else. It’s not instantaneous. For your million and one questions about whether it’s approved for your use in a tree, on a plane, at the zoo, and all other extrapolations – please ask Google/your doctor/the manufacturer, and not me. I don’t know. :)

  4. Q: Will any of this work for people NOT on Fiasp?
    A: Nothing is guaranteed (even for other people on Fiasp), but the folks who’ve started testing 0.6.0 even without Fiasp (on Humalog or Novolog/Novorapid, etc.) have been happier on it vs. earlier versions, too.

    I don’t expect Fiasp to work super well forever for me, given what I’ve heard from other people with months of experience on it…and given my first two weeks of Fiasp not being spectacular, I want people to not expect miracles. (Sorry, this blog post does not promise miracles, so sorry if you got super excited at the above. No miracles! This is not a cure! We still have diabetes!) Like all things artificial pancreas, I think it’s better to be cautiously hopeful with realistic expectations that things *might* be a little bit better than before, but as always, YDMV (your diabetes may/will always vary), your body will vary, and life happens, etc. so who knows.

Just 4 months ago, we published a blog post pointing out that the new features had allowed us to achieve 4 out of 5 of: no bolus; not counting carbs, medium/high carb meals, 80%+ time in range; and no hypoglycemia.  With Fiasp and  0.6.0 (currently what’s in the dev branch), we’ve now achieved all 5 simultaneously: I can eat large high-carb meals, enter very vague guesstimates of 60 or 90 carbs (no need for actual carb counting, just general size-based meal announcement), and still achieve 80%+ time in range 70-150 mg/dL without ever going <55 mg/dL.  Does that mean that OpenAPS with Fiasp finally meets the definition of a “real” Artificial Pancreas (step 5 on JDRF’s 6-step AP development pathway)?  We think it does.

So, tl;dr (because long post is long): with Fiasp and 0.6.0-dev branch, I’m able to not bolus for meals, and just enter a very generally sized meal estimate. It’s working well for me, and like all things, we’re working to make it available to other people via OpenAPS for others who want to try similar features/approaches. It may not work well for everyone. If it helps one other person, though, like everything else it’ll be worth it. Big thanks to Scott for LOTS of development in 0.6.0 and partnership in design of these features; too many people to name for testing and providing feedback and helping iterate on these features; and to the entire community for being awesome and helping us to continue to push the envelope on what might be possible for those of us with type 1 diabetes. :)

Why a non-academic (patient) publishes in academic journals

Today I was able to share that my Letter to the Editor was published in the Journal of Diabetes Science and Technology. It’s on why we need to set expectations to help patients successfully adopt hybrid closed loop/artificial pancreas/automated insulin delivery system technology. (You can read it via image copies in the first link.)

JDST_screenshot_LTE_expectationsI’ve published a few times in academic journals. Last year, Scott and I published another Letter to the Editor in JDST with the OpenAPS outcomes study we had presented at the 2016 ADA Scientific Sessions conference.

But, I’m sure people are wondering why I choose to do so – especially as I am 1) a patient and 2) a non-academic. (Although in case you missed it – I’m now the Principal Investigator on a grant-funded study!)

While there are many healthcare providers, researchers, industry employees, FDA staff, etc. who read blogs like this and are up to speed on the bleeding edge of diabetes technology… there are easily 10x the number that do not.

And if they don’t know about the existence of this world, they won’t know about the valuable lessons we’re learning and won’t be able to share those lessons and knowledge with other healthcare providers and the patients that they treat.

So, in my pursuit to find more ways to share knowledge from our community with the rest of the diabetes community, this is why we submit abstracts for posters and presentations to conferences like ADA’s Scientific Sessions. Our abstracts are evaluated just like the abstracts from traditional healthcare providers (as far as they can tell, I’m just another academic, albeit one with fewer credentials ;)), and I’m proud that they’re evaluated and deemed worthy of poster presentations alongside mainstream researchers. Ditto for our written publications, whether they be letters to the editor or other types of articles submitted to journals and publications.

We need to find more ways to share and distribute knowledge with the “traditional” medical and academic research world. And I’d love to do more – so please share ideas if you have them. And if you’re someone who bridges the gap to the traditional world, I appreciate your help sharing these types of articles and conversations with your colleagues.

Opening pathways for discovery, research, and innovation in health and healthcare

How can we get more patients and other communities to leverage the benefits of the #WeAreNotWaiting mindset for research, development, and innovation in health (and healthcare)?

That’s a question I’ve been asking myself for two years, after seeing the diverse efforts and valuable outpourings from the DIY diabetes community (ranging from amazing remote monitoring solutions for CGM to algorithms, hardware, and other software for automated insulin delivery systems).

But, how to scale? In diabetes, we’re perhaps uniquely positioned given our data-driven disease. However, I believe that the data and innovation approach we’ve taken in diabetes can help many other types of patient communities as well. I just didn’t know how to help scale it… until recently.

Last year when a group of us from the OpenAPS community participated in the Quantified Self Public Health Symposium in 2016, it prompted some follow up conversations with various academic researchers, including Eric Hekler from Arizona State University (ASU).

Eric started a conversation, and kept asking me: What could you do if you partnered with academic researchers? How can traditional researchers help the DIY community, OpenAPS or otherwise?

That also sparked a conversation with Paul Tarini, a senior program officer at the Robert Wood Johnson Foundation (RWJF), about potential funding for a project.

(Important to state here: OpenAPS itself is not a funded project. It has not been, and will not be. It is 100% DIY, non-commercial, and it has been built by a community of volunteers.)

What I wanted to talk to RWJF about was funding a collaboration with academic researchers for studying data and innovation coming out of the community; and to ultimately identify needs and build resources to help scale this type of community effort and empower other patient communities as well.

It took over a year, but we were able to work through initial project proposals and were then invited to submit a full proposal. And on Wednesday (September 6, 2017), I found out that we have been awarded the grant, and this project work will be funded by the Robert Wood Johnson Foundation. The project officially begins on September 15 and will run for 18 months.

So what exactly is this project?

Our project is titled “Learning to not wait: Opening pathways for discovery, research, and innovation in health and healthcare.”

It entails a number of things.

    1. We are creating an on-call data science team to support research in the DIY community. More details will be forthcoming, but essentially this team is there to help do research on the myriad of questions bubbling out of the community. For example – how does sensitivity change during growth spurts, during periods of inactivity, or when changing insulin types? What are some of the most successful mealtime insulin dosing strategies? Etc. People will be able to submit ideas, and get help formulating the idea into a researchable question, and get the research done.
    2. Studying the process of research when done by patients, and the barriers they/their research run into when spreading this scientific knowledge. I personally know there are a lot of barriers, but we need to document them and find solutions. (There are a lot of prejudice and perceived stigmas toward patient researchers doing this type of scientific work, around things like quality of research, methods of distributing knowledge, etc.)
    3. Convening a meeting with patients, traditional researchers, legal experts, and others in this innovative research space to discuss and address some of the known and being-found barriers for this type of research. I envision a white paper type publication to come out of this meeting to document the lay of the land as it is.
    4. Creating toolkit-type resources based on what we’ve learned and are learning in this project for helping patients new to DIY and this type of research take on various levels of research or innovation activity. Part of our project’s scope of work, in #WeAreNotWaiting spirit, includes beta testing with 2-3 other patient communities, so we can get feedback and iterate and roll these out as quickly as possible.

Our project has a couple of principles that I feel strongly about, and am also very proud of in approaching this body of work.

  • I am the scientific Principal Investigator of this project. This is unique in the world of grant-funded research, where a patient is driving the scientific discovery process. (I’m proud and very appreciative to have two amazing co-PI’s who are helping with some of the administrative work since the grant is being administered through Arizona State University Foundation, who is being an awesome partner given the uniqueness of this situation*.) My co-PI’s are Eric Hekler and Erik Johnston. The other members of the team include John Harlow, who’s a MacArthur Foundation Postdoctoral Fellow; Sayali Phatak, a PhD student at ASU; and Keren Hirsch from the ASU Decision Theater.
  • #WeAreNotWaiting is the mantra for this project and our entire team. We plan to be as efficient as possible in doing the project work, which includes being as timely as possible with sharing findings back with the community as soon as they’re ready (a given; there’s no reason to wait) as well as finding ways to publish that are faster than the very traditional academic publishing process, and being thoughtful about the right audiences outside the patient community for communicating about this project’s work.
  • Always asking why. As a brand new PI, I have a lot to learn. But as a non-traditional PI, I also am running into a lot of things that are done the way they’d be done if I was traditionally inside an organization. I plan to explore and challenge as many of these, and try to document the decisions I make in this project as I come to those forks in the road. In some cases, I choose the easier paths because for my project/work/focus, it does not matter. In other cases, based on principle, I choose the harder path-blazing approach.

* About the uniqueness of this project and the administrative details

Since I’m an individual patient researcher, not affiliated with the organization, we decided we would make the official grantee financial organization Arizona State University Foundation, since that’s where my co-PI’s were. But true to the nature of this project, I want to document the challenges and opportunities that come with that, so more to come about all the interesting lessons learned about the process of putting together the proposal and the grant approval process once we heard the grant would be awarded. That way, future patient researchers have a leg up on what is coming when taking on this type of project and are aware of what this approach entailed. The short version is I am a subcontractor to ASU for purpose of the grant; but am not employed or otherwise affiliated with ASU. Props to the many people at ASU who learned about me and this project in the approval process and rolled with it / helped make it happen.

So, what’s next? When do you start? What are you waiting on?!

Coming super soon – a project website with more details about this project.

For my fellow PWDs:

  • Stay tuned for the project website going live, which will also include more details about how individuals in the diabetes community can pitch ideas/get started working with the on-call data science team.

For patients reading this who are members of other patient disease communities:

  • Ping me if you’re SUPER excited and can’t wait to tell me :), or stay tuned for more info about the process for proposing that your patient community be one of the communities with whom we beta test some of the tools/resources developed toward the latter phases of this project.

If you’re someone else who’s interested in this work (such as a legal expert, other researcher, etc.):

  • Also ping me if you’re interested in hearing more about the meeting we plan to convene with a small multidisciplinary group to discuss and address barriers of patient-driven research. Even if we can’t get everyone interested to attend the in-person meeting, I would still love your input and collaboration for the white paper and/or other publications and intersections with this project.

For everyone else:

  • Please do let me know if there’s a particular aspect of this project that you’re curious to learn more about – whether it’s some of what I’m facing and documenting as a patient PI researcher, or otherwise. That’ll help me prioritize some of the blog posts and articles I’m writing about this process!

Thanks to everyone who managed to read this ginormous blog post.

I am incredibly excited about the project, and having resources to focus on how patients and non-traditional actors in healthcare can drive research, development, innovation, and knowledge sharing in non-traditional methods and from the ground up, plus prioritize and change the healthcare research agenda. Like my work in OpenAPS that stands on the shoulders of so many, I’m hoping this project is the first of many and gets to a place for others to leverage this work and take it beyond the scope of what we’ve all imagined is currently possible.

A huge thanks to the team partnering with me on this work; to ASU for being a great partner as an organization; to the Robert Wood Johnson Foundation for supporting this project (and in particular to our program manager, Paul Tarini, for his ongoing support throughout this entire process); and many extra thanks to Scott and all my family and friends for supporting me throughout the proposal process and being the recipients of some VERY excited and !!! filled texts when I found out we had officially been awarded the grant for this project.