Scuba diving, snorkeling, and swimming with diabetes (and #OpenAPS)

tl;dr – yes, you can scuba dive with diabetes, snorkel with diabetes, and swim with diabetes! Here’s what you need to know.

I meant to write this post before I left for a two-week Hawaii trip, and since I answered about a question a day on various platforms as I posted pictures from the trip, I really wish I had done it ahead of time. Oh well. :) I especially wish someone had written this post for me 2 years ago, before my first scuba dive, because I couldn’t find a lot of good information on the practicalities of good approaches for dealing with all the details of scuba diving with diabetes and an insulin pump and CGM and now closed loops. Scuba diving, snorkeling, and swimming with diabetes are actually pretty common, so here are a few things to keep in mind/tips from me, before diving (pun intended) into some explanations of what I think about for each activity diabetes-wise.

scuba_diving_with_diabetes_tips_water_activities_by_Dana_M_Lewis

General tips for water activities when living with diabetes:

  1. Most important: be aware of your netIOB going into the activity. Positive netIOB plus activity of any kind = expedited low BG. This is the biggest thing I do to avoid lows while scuba diving or snorkeling – trying to time breakfast or the previous meal to be a few hours prior so I don’t have insulin peaking and accelerated by the activity when I’m out in the water and untethered from my usual devices.
  2. Second most important: CGM sensor and transmitter on your body can get wet (shower, pools, hot tubs, oceans, etc.), but keep in mind it can’t read underwater. And sometimes it gets waterlogged from short or long exposure to the water, so it may take a while to read even after you get it above water or dry off. And, historically I’ve had sensors come back and the CGM will sometimes read falsely high (100-200 points higher than actual BG), so exercise extreme caution and I highly recommend fingerstick testing before dosing insulin after prolonged water exposure.
  3. Know which of your devices are waterproof, watertight, etc. Tip: most pumps are not waterproof. Some are watertight*. The * is because with usual wear and tear and banging into things, small surface cracks start showing up and make your pump no longer even watertight, so even a light splash can kill it. Be aware of the state of your pump and protect it accordingly, especially if you have a limited edition super special super rare DIY-loopable pump. I generally take a baggie full of different sized baggies to put pump/CGM/OpenAPS rig into, and I also have a supposedly waterproof bag that seals that I sometimes put my bagged devices into. (More on that below).
    1. And in general, it’s always wise to have a backup pump (even if it’s non-loopable) on long/tropical/far away trips, and many of the pump companies have a loaner program for overseas/cruise/tropical travel.
  4. Apply sunscreen around your sites/sensors because sunburn and applying or removing them hurts. However, as I learned on this trip, don’t do TOO much/any sunscreen directly on top of the adhesive, as it may loosen the adhesive (just surrounding the edges is fine). I usually use a rub sunscreen around the edges of my pump site and CGM sensor, and do the rest of my body with a spray sunscreen. And pack extra sites and sensors on top of your extras.

Why extras on top of your extras? Because you don’t want to have a vacation like I did where I managed to go through 5 pump site catastrophes in 72 hours and run out of pump sites and worry about that instead of enjoying your vacation. Here’s what happened on my last vacation pump-site wise:

  • Planned to change my site the next morning instead of at night, because then I would properly use up all the insulin in my reservoir. So I woke up, put in a new pump site (B) on my back hip, and promptly went off to walk to brunch with Scott.
  • Sitting down and waiting for food, I noticed my BG was rocketing high. I first guessed that I forgot to exit the prime screen on the pump, which means it wasn’t delivering any insulin (even basal). Wrong. As I pulled my pump off my waist band, I could finally hear the “loud siren escalating alarm” that is “supposed” to be really audible to anyone…but wasn’t audible to me outside on a busy street. Scott didn’t hear it, either. That nice “siren” alarm was “no delivery”, which meant there was something wrong with the pump site and I hadn’t been getting any insulin for the last hour and a half. Luckily, I have gotten into the habit of keeping the “old” pump site (A) on in case of problems like this, so I swapped the tubing to connect to the “old” site A and an hour or so later as insulin started peaking, felt better. I pulled site B out, and it was bent (that’s why it was no delivery-ing). I waited until that afternoon to put in the next pump site (C) into my leg. It was working well into dinner, so I removed site A.
  • However, that night when I changed clothes after dinner, site C ripped out. ARGHHHH. And I had removed site A, so I  had to put on another site (D). Bah, humbug. Throw in someone bumping a mostly-full insulin vial off the counter and it shattering, and I was in one of my least-pleased-because-of-diabetes moods, ever. It was a good reminder of how much a closed loop is not a cure, because we still have to deal with bonked sites and sites in general and all this hoopla.
  • Site D lasted the next day, while we went hiking at Haleakala (a 12.2 mile hike, which was amazing that neither my site or my sensor acted up!). However, on the third day in this adventure, I put on sunscreen to go to the beach with the whole family. When we came back from the beach, I went to remove my cover up to shower off sand before getting into the pool. As my shirt came over my head, I saw something white fly by – which turned out to be 4th pump site, flying around on the end of the pump tube, rather than being connected to my body. There went Site D. In went my fifth site (E), which I tackled down onto my body with extra flexifix tape that I usually use for CGM sensors because I. Was. Fed. Up. With. Pump. Sites!
  • Thankfully, site E lasted a normal life and lasted til I got home and did my next normal site change, and all is back to normal.

Lessons learned about pump sites: I repeat, don’t sunscreen too much on the adhesive, just sunscreen AROUND the adhesive. And pack extras, because I went through ~2 weeks of pump sites in 3 days, which I did not expect – luckily I had plenty of extra and extras behind those!

Now on to the fun stuff.

Scuba Diving with diabetes:

  • 2 years ago was my “Discovery” dive, where you aren’t certified but they teach you the basics and do all the equipment for you so you just do some safety tutorials and go down with a guide who keeps you safe. For that dive, I couldn’t find a lot of good info about scuba diving with diabetes, other than logical advice about the CGM sensor not transmitting under water, the receiver not being waterproof, and the pump not being waterproof. I decided to try to target my BG in advance to be around 180 mg/dl to avoid lows during the dive, and for extra safety eat some skittles before I went down – plus I suspended and removed my pump. Heh. That worked too well, and I was high in the mid-200s in between my two dives, so I found myself struggling to peel my wetsuit off in between dives to connect my pump and give a small bolus. The resulting high feeling after the second dive when my BG hadn’t re-normalized yet plus the really choppy waves made me sea-sick. Not fun. But actually diving was awesome and I didn’t have any lows.
    • Pro tip #1 for scuba diving with diabetes: If you can, have your pump site on your abdomen, arm, or other as-easy-as-possible location to reconnect your pump for between-dive boluses so you don’t have to try to get your arm down the leg of your wetsuit to re- and disconnect.
  • I decided I wanted to get PADI certified to scuba dive. I decided to do the lessons (video watching and test taking) and pool certification and 2/4 of my open water dives while on a cruise trip last February. Before getting in the pool, I didn’t do anything special other than avoid having too much (for me that’s >.5u) of netIOB. For the open water dives at cruise ports, I did the same thing. However, due to the excitement/exertion of the first long dive, along with having to do some open water safety training after the first dive but before getting out (and doing my swim test in choppy open water), I got out of the water after that to find that I was low. I had to take a little bit longer (although maybe only 10 extra minutes) than the instructor wanted to finish waiting for my BG to come up before we headed out to the second dive. I was fine during and after the second dive, other than being exhausted.
    • Pro tip #2 for scuba diving with diabetes: Some instructors or guides get freaked out about the idea of having someone diving with diabetes. Get your medical questionnaire signed by a doctor in advance, and photocopy a bunch so you can take one on every trip to hand to people so they can cover themselves legally. Mostly, it helps for you to be confident and explain the safety precautions you have in place to take care of yourself. It also helps if you are diving with a buddy/loved one who understands diabetes and is square on your safety plan (what do you do if you feel low? how will you signal that? how will they help you if you need help in the water vs. on the boat, etc.?). For my training dives, because Scott was not with me, I made sure my instructor knew what my plan was (I would point to my arm where my sensor was if I felt low and wanted to pause/stop/head to the surface, compared to the other usual safety signals).
  • This past trip in Hawaii I was finishing off a cold at the beginning, so at the end of the trip I started with a shore dive so I could go slow and make sure it was safe for me to descend. I was worried about going low on this one, since we had to lug our gear a hundred feet or so down to the beach and then into the water (and I’ve never done a shore dive prior to this). I did my usual prep: temp basal to 0 on my pump for a few hours (so it can track IOB properly) and suspend; place it and CGM and OpenAPS rigs in baggies in my backpack; and confirming that my BG was flat at a good place without IOB, I didn’t eat anything extra. We went out slowly, had a great dive (yay, turtles), and I was actually a little high coming back up after the dive rather than low. My CGM didn’t come back right away, so I tested with a fingerstick and hooked my pump back up right away and gave a bolus to make up for the missed insulin during the dive. I did that before we headed off the beach and up to clean off our gear.
    • Pro tip #3 for scuba diving with diabetes: Don’t forget that insulin takes 60-90 minutes to peak, so if you’ve been off your pump and diving for a while, even if you are low or fine in that moment, that missing basal will impact you later on. Often if I am doing two dives, even with normal BG levels I will do a small bolus in between to be active by the time I am done with my second dive, rather than going 3+ hours with absolutely no insulin. You need some baseline insulin even if you are very active.
  • While in Hawaii, we also got up before the crack of dawn to head out and do a boat dive at Molokini. It was almost worth the 5am wakeup (I’m not a morning person :)). As soon as I woke up at 5am, I did an “eating soon” and bolused fully for my breakfast, knowing that we’d be getting on the boat at 6:30amish (peak insulin time), but it’d take a while to get out to the dive site (closer to 7:30am), so it was better to get the breakfast bolus in and let it finish counteracting the carbs. I did, but still ran a little higher than I would have liked while heading out, so I did another small correction bolus about half an hour before I temped to zero, suspended, and disconnected and baggied/bagged/placed the bag up in the no-water-shelf on the boat. I then did the first dive, which was neat because Molokini is a cool location, and it was also my first “deep” dive where we went down to about ~75 feet. (My previous dives have all been no deeper than about ~45 feet.) Coming back onto the boat, I did my usual of getting the gear off, then finding a towel to dry my hands and do a fingerstick BG test to see what I was. In this case, 133 mg/dl. Perfect! It would take us almost an hour for everyone to get back on the boat and then move to dive spot #2, so I peeled down my wetsuit and reconnected my pump to get normal basal during this time and also do a small bolus for the bites of pineapple I was eating. (Given the uncertainties of accuracy of CGM coming out of prolonged water exposure, since they sometimes run 100+ points high for me, I chose not to have the loop running during this dive and just manually adjust as needed). We got to spot #2 and went down for the dive, where we saw sharks, eels, and some neat purple-tailed fish. By the end of the dive, I started to feel tired, and also felt hungry. Those are the two signs I feel underwater that probably translate to being low, so I was the first from our group to come up when we got back from the boat. I got on the boat, removed gear, dried hands, tested, and…yep. 73 mg/dl. Not a bad low, but I’m glad I stopped when I did, because it’s always better to be sure and safe than not know. I had a few skittles while reconnecting my pump, and otherwise was fine and enjoyed the rest of the experience including some epic dolphin and whale watching on the return boat ride back to the harbor!
    • Pro tip #4 for scuba diving with diabetes: You may or may not be able to feel lows underwater; but listening to your body and using your brain to pay attention to changes, about low or not, is always a really good idea when scuba diving. I haven’t dived enough  (7 dives total now?) or had enough lows while diving to know for sure what my underwater low symptoms are, but fatigue + hunger are very obvious to me underwater. Again, you may want to dive with a buddy and have a signal (like pointing to the part of your body that has the CGM) if you want to go up and check things out. Some things I read years ago talked about consuming glucose under water, but that seems above my skill level so I don’t think I’ll be the type of diver who does that – I’d rather come to the surface and have someone hand me from the boat something to eat, or shorten the dive and get back on the boat/on shore to take care of things.

All things considered, scuba diving with diabetes is just like anything else with diabetes – it mostly just takes planning ahead, extra snacks (and extra baggies) to have on hand, and you can do it just like anyone else. (The real pain and suffering of scuba diving in my opinion comes not from high or low BGs; but rather pulling hair out of your mask when you take it off after a dive! Every time = ouch.)

Snorkeling with diabetes:

  • Most of my snorkeling experiences/tips sound very similar to the scuba diving ones, so read the above if you haven’t. Remember:
    • Don’t go into a snorkel with tons of positive IOB.
    • Have easy-access glucose supplies in the outer pockets of your bag – you don’t want to have to be digging into the bottom of your beach bag to get skittles out when you’re low!
    • Sunscreen your back well 😉 but don’t over-sunscreen the adhesive on sites and sensors!
    • Make sure your pump doesn’t get too hot while you’re out snorkeling if you leave it on the beach (cover it with something).
    • You could possibly do baggies inside a waterproof bag and take your pump/cgm/phone out into the water with you. I did that two years ago when I didn’t trust leaving my pump/receiver/phone on shore, but even with a certified waterproof bag I spent more time worrying about that than I did enjoying the snorkel. Stash your pump/gear in a backpack and cover it with a towel, or stick it in the trunk/glove compartment of your car, etc.
    • Remember CGMs may not read right away, or may read falsely high, so fingerstick before correcting for any highs or otherwise dosing if needed.

Swimming with diabetes:

  • Same deal as the above described activities, but with less equipment/worries. Biggest things to think about are keeping your gear protected from splashes which seem more common poolside than oceanside…and remember to take your pump off, phone or receiver out of your pocket, etc. before getting in the water!

Wait, all of this has been about pump/CGM. What about closed looping? Can you #OpenAPS in the water?

    • If you don’t have your pump on (in the water), and you don’t have CGM data (in the water, because it can’t transmit there), you can’t loop. So for the most part, you don’t closed loop DURING these activities, but it can be incredibly helpful (especially afterward to make up for the missing basal insulin) to have once you get your pump back on.

However, if your CGM is reading falsely high because it’s waterlogged, you may want to set a high temporary target or turn your rig off during that time until it normalizes. And follow all the same precautions about baggies/waterproofing your rig, because unlike the pump, it’s not designed for even getting the lightest of splashes on it, so treat it like you treat your laptop. For my Hawaii trip, I often had my #OpenAPS rig in a baggie inside of my bag, so that when my pump was on and un-suspended and I had CGM data, it would loop – however, I kept a closer eye on my BGs in general, including how the loop was behaving, in the hour following water activities since I know CGM is questionable during this time.

I’m really glad I didn’t let diabetes stop me from trying scuba diving, and I hope blog posts like this help you figure out how you need to plan ahead for trying new water activites. I’m thankful for technology of pumps and CGMs and tools like #OpenAPS that make it even easier for us to go climb mountains and scuba dive while living with diabetes (although not in the same day ;)).

OpenAPS feature development in 2016

It’s been two years since my first DIY closed loop and almost two years since OpenAPS (the vision and resulting ecosystem to help make artificial pancreas technology, DIY or otherwise, more quickly available to more people living with diabetes) was created.  I’ve spent time here (on DIYPS.org) talking about a variety of things that are applicable to people who are DIY closed looping, but also focusing on things (like how to “soak” a CGM sensorr and how to do “eating soon” mode) that may be (in my opinion) universally applicable.

OpenAPS feature development in 2016

However, I think it’s worth recapping some of the amazing work that’s been done in the OpenAPS ecosystem over the past year, sometimes behind the scenes, because there are some key features and tools that have been added in that seem small, but are really impactful for people living with DIY closed loops.

  1. Advanced meal assist (aka AMA)
    1. This is an “advanced feature” that can be turned on by OpenAPS users, and, with reliable entry of carb information, will help the closed loop assist sooner with a post-meal BG rise where there is mis-timed or insufficient insulin coverage for the meal. It’s easy to use, because the PWD only has to put carbs and a bolus in – then AMA acts based on the observed absorption. This means that if absorption is delayed because you walk home from dinner, have gastroparesis, etc., it backs off and wait until the carbs actually start taking effect (even if it is later than the human would expect).
    2. We also now have the purple line predictions back in Nightscout to visualize some of these predictions. This is a hallmark of the original iob-cob branch in Nightscout that Scott and I originally created, that took my COB calculated by DIYPS and visualized the resulting BG graph. With AMA, there are actually 3 purple lines displayed when there is carb activity. As described here in the OpenAPS docs, the top purple line assumes 10 mg/dL/5m carb (0.6 mmol/L/5m) absorption and is most accurate right after eating before carb absorption ramps up. The line that is usually in the middle is based on current carb absorption trends and is generally the most accurate once carb absorption begins; and the bottom line assumes no carb absorption and reflects insulin only. Having the 3 lines is helpful for when you do something out of the ordinary following a meal (taking a walk; taking a shower; etc.) and helps a human decide if they need to do anything or if the loop will be able to handle the resulting impact of those decisions.
  2. The approach with a “preferences” file
    1. This is the file where people can adjust default safety and other parameters, like maxIOB which defaults to 0 during a standard setup, ultimately creating a low-glucose-suspend-mode closed loop when people are first setting up their closed loops. People have to intentionally change this setting to allow the system to high temp above a netIOB = 0 amount, which is an intended safety-first approach.
    2. One particular feature (“override_high_target_with_low”) makes it easier for secondary caregivers (like school nurses) to do conservative boluses at lunch/snack time, and allow the closed loop to pick up from there. The secondary caregiver can use the bolus wizard, which will correct down to the high end of the target; and setting this value in preferences to “true” allows the closed loop to target the low end of the target. Based on anecdotal reports from those using it, this feature sounds like it’s prevented a lot of (unintentional, diabetes is hard) overreacting by secondary caregivers when the closed loop can more easily deal with BG fluctuations. The same for “carbratio_adjustmentratio”, if parents would prefer for secondary caregivers to bolus with a more conservative carb ratio, this can be set so the closed loop ultimately uses the correct carb amount for any needed additional calculations.
  3. Autosensitivity
    1. I’ve written about autosensitivity before and how impressive it has been in the face of a norovirus and not eating to have the closed loop detect excessive sensitivity and be able to deal with it – resulting in 0 lows. It’s also helpful during other minor instances of sensitivity after a few active days; or resistance due to hormone cycles and/or an aging pump site.
    2. Autosens is a feature that has to be turned on specifically (like AMA) in order for people to utilize it, because it’s making adjustments to ISF and targets and looping accordingly from those values. It also have safety caps that are set and automatically included to limit the amount of adjustment in either direction that autosens can make to any of the parameters.
  4. Tiny rigs
    1. Thanks to Intel, we were introduced to a board designer who collaborated with the OpenAPS community and inspired the creation of the “Explorer Board”. It’s a multipurpose board that can be used for home automation and all kinds of things, and it’s another tool in the toolbox of off-the-shelf and commercial hardware that can be used in an OpenAPS setup. It’s enabled us, due to the built in radio stick, to be able to drastically reduce the size of an OpenAPS setup to about the size of two Chapsticks.
  5. Setup scripts
    1. As soon as we were working on the Explorer Board, I envisioned that it would be a game changer for increasing access for those who thought a Pi was too big/too burdensome for regular use with a DIY closed loop system. I knew we had a lot of work to do to continue to improve the setup process to cut down on the friction of the setup process – but balancing that with the fact that the DIY part of setting up a closed loop system was and still is incredibly important. We then worked to create the oref0-setup script to streamline the setup process. For anyone building a loop, you still have to set up your hardware and build a system, expressing intention in many places of what you want to do and how…but it’s cut down on a lot of friction and increased the amount of energy people have left, which can instead be focused on reading the code and understanding the underlying algorithm(s) and features that they are considering using.
  6. Streamlined documentation
    1. The OpenAPS “docs” are an incredible labor of love and a testament to dozens and dozens of people who have contributed by sharing their knowledge about hardware, software, and the process it takes to weave all of these tools together. It has gotten to be very long, but given the advent of the Explorer Board hardware and the setup scripts, we were able to drastically streamline the docs and make it a lot easier to go from phase 0 (get and setup hardware, depending on the kind of gear you have); to phase 1 (monitoring and visualizing tools, like Nightscout); to phase 2 (actually setup openaps tools and build your system); to phase 3 (starting with a low glucose suspend only system and how to tune targets and settings safely); to phase 4 (iterating and improving on your system with advanced features, if one so desires). The “old” documentation and manual tool descriptions are still in the docs, but 95% of people don’t need them.
  7. IFTTT and other tool integrations
    1. It’s definitely worth calling out the integration with IFTTT that allows people to use things like Alexa, Siri, Pebble watches, Google Assistant (and just about anything else you can think of), to easily enter carbs or “modes” for OpenAPS to use, or to easily get information about the status of the system. (My personal favorite piece of this is my recent “hack” to automatically have OpenAPS trigger a “waking up” mode to combat hormone-driven BG increases that happen when I start moving around in the morning – but without having to remember to set the mode manually!)

..and that was all just things the community has done in 2016! :) There are some other exciting things that are in development and being tested right now by the community, and I look forward to sharing more as this advanced algorithm development continues.

Happy New Year, everyone!

Automating “wake up” mode with IFTTT and #OpenAPS to blunt morning hormonal rises

tl;dr – automate a trigger to your #OpenAPS rig to start “wake up” mode (or “eating soon”, assuming you eat breakfast) without you having to remember to do it.

Yesterday morning, I woke up and headed to my desk to start working. Because I’m getting some amazing flat line overnights now, thanks to my DIY closed loop (#OpenAPS), I’m more attuned to the fact that after I wake up and start moving around, my hormones kick in to help wake me up (I guess), and I have a small BG rise that’s not otherwise explained by anything else. (It’s not a baseline basal problem, because it happens after I wake up regardless of it being 6am or 8am or even 10:30am if I sleep in on a weekend. It’s also more pronounced when I feel sleep deprived, like my body is working even harder to wake me up.)

Later in the morning, I took a break to jot down my thoughts in response to a question about normal meal rises on #OpenAPS and strategies to optimize mealtimes. It occurred to me later, after being hyper attuned to my lunch results, that my morning wake-up rise up from 1oo perfectly flat to ~140 was higher than the 131 peak I hit after my lunchtime bowl of potato soup.

Hmm, I thought. I wish there was something I could do to help with those morning rises. I often do a temporary target down to 80 mg/dL (a la “eating soon” mode) once I spot the rise, but that’s after it’s already started and very dependent on me paying attention/noticing the rise.

I also have a widely varied schedule (and travel a lot), so I don’t like the idea of scheduling the temp target, or having recurring calendar events that is yet another thing to babysit and change constantly.

What I want is something that is automatically triggered when I wake up, so whether I pop out of the bed or read for 15 minutes first, it kicks in automatically and I (the non-morning person) don’t have to remember to do one more thing. And the best trigger that I could think of is when I end Sleep Cycle, the sleep tracking app I use.

I started looking online to see if there was an easy IFTTT integration with Sleep Cycle. (There’s not. Boo.) So I started looking to see if I could stick my Sleep Cycle data elsewhere that could be used with IFTTT. I stumbled across this blog post describing Sleep Cycle -> iOS Apple HealthKit -> UP -> Google Spreadsheet -> Zapier -> Add to Google Calendar. And then I thought I would add another IFTTT trigger for when the calendar entry was added, to then send “waking up” mode to #OpenAPS. But I don’t need all of the calendar steps. The ideal recipe for me then might be Sleep Cycle ->  iOS Health Kit -> UP -> IFTTT sends “waking up mode” -> Nightscout -> my rig. However, I then learned that UP doesn’t necessarily automatically sync the data from HealthKit, unless the app is open. Hmm. More rabbit holing. Thanks to the tweet-a-friend option, I talked to Ernesto Ramirez (long time QS guru and now at Fitabase), who found the same blog post I did (above) and when I described the constraints, then pointed me to Hipbone to grab Healthkit sleep data and stuff it into Dropbox.

(Why Sleep Cycle? It is my main sleep tracker, but there’s IFTTT integration with Fitbit, Jawbone Up, and a bunch of other stuff, so if you’re interested in this, figure out how to plug your data into IFTTT, otherwise follow the OpenAPS docs for using IFTTT to get data into Nightscout for OpenAPS, and you’ll be all set. I’m trying to avoid having to go back to my Fitbit as the sleep tracker, since I’m wearing my Pebble and I was tired of wearing 2 things. And for some reason my Pebble is inconsistent and slow about showing the sleep data in the morning, so that’s not reliable for this purpose. )

Here’s how I have enabled this “wake up” mode trigger for now:

  1. If you’re using Sleep Cycle, enable it to write sleep analysis data to Apple HealthKit.
  2. Download the Hipbone app for iPhone, connect it with your Dropbox, and allow Hipbone to read sleep data from HealthKit.
  3. Log in or create an account in IFTTT.com and create a recipe using Dropbox as the trigger, and Maker as the action to send a web request to Nightscout. (Again, see the OpenAPS docs for using IFTTT triggers to post to Nightscout, there’s all kinds of great things you can do with your Pebble, Alexa, etc. thanks to IFTTT.) To start, I made “waking up” soon a temporary target to 80 for 30 minutes.

Guess what? This morning, I woke up, ended sleep cycle, and ~10-11 minutes later got notifications that I had new data in Dropbox and checked and found “waking up” mode showing in Nightscout! Woohoo. And it worked well for not having a hormone-driven BG rise after I started moving around.

First "waking up" mode in #OpenAPS automation success

Ideally, this would run immediately, and not take 10-11 minutes, but it went automatically without me having to open Hipbone (or any other app), so this is a great interim solution for me until we find an app that will run more quickly to get the sleep data from HealthKit.

We keep finding great ways to use IFTTT triggers, so if you have any other cool ones you’ve added to your DIY closed loop ecosystem, please let me know!

Our take on how to DIY closed loop, safely

You will often see similar growth and evolution cycles across any type of online community, and the closed loop community is following this growth cycle as expected. Much like how Nightscout went from one very hard way to setup to get your CGM data in the cloud, to ultimately having dozens of DIY options and now more recently, multiple commercial options, closed looping is following similar trends. OpenAPS was the first open source option for people who wanted to DIY loop, and now there are a growing number of ways to build or run closed loops! And next year, there should be at least one commercial option publicly available in the U.S. followed by several more options in 2018 on the commercial market. Awesome! This is exactly the progress we were hoping to see, and facilitate happening more quickly, by making our work & encouraging others to make their work open source.

We’ve learned a lot (from building our own closed loop and watching others do so through OpenAPS) that we think is relevant to anyone who pursues DIY closed looping, regardless of the technology option they choose. This thought process and approach will likely also be relevant to those who switch to a closed loop commercial option in the future, so we wanted to document some of the thought process that may be involved.

Approaching closed looping safely

Before considering closed looping, people should know:

  • A (hybrid or even full) closed loop is not a cure. There will be a learning curve, much like switching to a pump for the first time.
  • Even after you get comfortable with a closed loop, there will still sometimes be high or low BGs, because we are still dealing with insulin that peaks in 60-90 minutes; we’ll still get kinked pump sites or pooled insulin; and we’ll still have hormones that drive our BGs up and down very rapidly in ways we can’t predict, but must react to. Closed looping helps a lot, but there’s still a lot that goes into managing diabetes.

Before using a DIY closed loop, people should consider:

  • Identifying or creating the method to visualize their data in a way they are comfortable with, both for real-time monitoring of loop activity and retrospective monitoring. This is a key component of DIY looping.
  • Running in “open loop” mode, where the system provides recommendations and you spend days or weeks analyzing and comparing those recommendations to how you would calculate and choose to take action manually.
  • Based on watching the “open loop” suggestions, decide your safety limits: you should set max basal and bolus rates, as well as max net IOB limits where relevant. Start conservative, knowing you can change them over time as you watch and validate how a particular DIY loop works with your body and your lifestyle.

Getting started with a DIY closed loop, people should think about the following:

  • Understand how it works, so you know how to fix it. Remember, by pursuing a DIY closed loop, you are responsible for it and the operation of it. No one is forcing you to do this; it’s one of many choices you can and will make with regards to how you personally choose to manage your diabetes.
  • But even more importantly, you need to understand how it works so you can choose if you need to step in and take manual action. You should understand how it works so you can validate “this is what it should be doing” and “I am getting the output and outcomes that I would expect if I were doing this decision making manually”.
  • Often, people will get frustrated by diabetes and take actions that the loop then has to compensate for. Or they’ll get lax on when they meal bolus, or not enter carbs into the system, etc. You will get much better results by putting better data into the system, and also by having a better understanding of insulin timing in your body, especially at meal times. Using techniques like “eating soon mode” will dramatically help anyone, with or without a closed loop, reduce and limit severity of meal spikes. Ditto goes for having good CGM “calibration hygiene” (h/t to Pete for this phrase) and ensuring you have thought about the ramifications of automating insulin dosing based on CGM data, and how you may or may not want to loop if you doubt your CGM data. (Like “eating soon”, ‘soaking’ a CGM sensor may yield you better first day results.)
  • Start with higher targets for the loop than you might correct to manually.
  • Move first from an “open loop” mode to a “low glucose suspend” type mode first, where max net IOB is 0 and/or max basal is set at or just above your max daily scheduled basal, so it low temps to prevent and limit lows, but does not high temp above bringing net IOB back to 0.
  • Gradually increase max net IOB above 0 (and/or increase max basal) every few days after several days without low BGs; similarly, adjust targets down 10 points for every few days gone without experiencing low BGs.
  • Test basic algorithms and adjust targets and various max rates before moving on to testing advanced features. (It will be a lot easier to troubleshoot, and learn how a new feature works, if you’re not also adjusting to closed looping in its entirety).
This is our (Dana & Scott‘s) take on things to think about before and when pursuing a closed loop option. But there’s about a hundred others running around the world with closed loops, too, so if you have input to share with people that they should consider before looping, leave a comment below! :) And if you’re looking to DIY closed loop before a commercial solution is available, you might also be interested in checking out the OpenAPS Reference Design and some FAQs related to OpenAPS.

Picture this: How to do “eating soon” mode

How do you prevent or limit meal spikes? It doesn’t take a closed loop artificial pancreas; it takes an understanding of insulin timing and the impact on your body.

I’ve written before about why getting insulin going in your body before meal carbs kick in is so important. You can read that really long post here. And I’ve written a slightly shorter post explaining how to do “eating soon mode” to achieve insulin activity peaking when you eat, without causing lows. But recently, I quickly scratched together an illustration to show the difference in the timing and outcomes between the “eating soon mode” approach compared to a traditional “pre-bolus” approach, and after receiving feedback that these images were helpful, decided to post them here.

(Again, for more context, read this post on how to calculate your eating soon amount; and this post for more of the science behind it and how we discovered this method 2+ (!) years ago. And as always, your diabetes may vary; I’m not a doctor; etc. but this is something that when applied consistently smooths out meal spikes, even when eating high fat or high protein or high carb or any kind of meal.)

What often happens with a pre-bolus of the meal insulin 15 minutes before a meal
What often happens with a pre-bolus of the meal insulin 15 minutes before a meal

 

The type of meal spike (minimal) you can achieve by getting insulin activity going 1 hour before the meal with "eating soon" mode approach
The type of meal spike (minimal) you can achieve by getting insulin activity going 1 hour before the meal with “eating soon” mode approach.

*Note – the calculation of (TargetBG-80)/ISF is assuming that you have already corrected to your normal target, i.e. 100 or 120.

Research studies and usability thoughts

It’s been a busy couple (ok, more than couple) of months since we last blogged here related to developments from #DIYPS and #OpenAPS. (For context, #DIYPS is Dana’s personal system that started as a louder alarms system and evolved into an open loop and then closed loop (background here). #OpenAPS is the open source reference design that enables anyone to build their own DIY closed loop artificial pancreas. See www.OpenAPS.org for more about that specifically.)

We’ve instead spent time spreading the word about OpenAPS in other channels (in the Wall Street Journal; on WNYC’s Only Human podcast; in a keynote at OSCON, and many other places like at the White House), further developing OpenAPS algorithms (incorporating “eating soon mode” and temporary targets in addition to building in auto-sensitivity and meal assist features), working our day jobs, traveling, and more of all of the above.

Some of the biggest improvements we’ve made to OpenAPS recently have been usability improvements. In February, someone kindly did the soldering of an Edison/Rileylink “rig” for me. This was just after I did a livestream Q&A with the TuDiabetes community, saying that I didn’t mind the size of my Raspberry Pi rig. I don’t. It works, it’s an artificial pancreas, the size doesn’t matter.

That being said… Wow! Having a small rig that clips to my pocket does wonders for being able to just run out the door and go to dinner, run an errand, go on an actual run, and more. I could do all those things before, but downsizing the rig makes it even easier, and it’s a fantastic addition to the already awesome experience of having a closed loop for the past 18 months (and >11,000 hours of looping). I’m so thankful for all of the people (Pete on Rileylink, Oscar on mmeowlink, Toby for soldering my first Edison rig for me, and many many others) who have been hard at work enabling more hardware options for OpenAPS, in addition to everyone who’s been contributing to algorithm improvements, assisting with improving the documentation, helping other people navigate the setup process, and more!

That leads me to today. I just finished participating in a month-long usability study focused on OpenAPS users. (One of the cool parts was that several OpenAPS users contributed heavily to the design of the study, too!) We tracked every day (for up to 30 days) any time we interacted with the loop/system, and it was fascinating.

At one point, for a stretch of 3 days, we counted how many times we looked at our BGs. Between my watch, 3 phone apps/ways to view my data, the CGM receivers, Scott’s watch, the iPad by the bed, etc: dozens and dozens of glances. I wasn’t too surprised at how many times I glance/notice my BGs or what the loop is doing, but I bet other people are. Even with a closed loop, I still have diabetes and it still requires me to pay attention to it. I don’t *have* to pay attention as often as I would without a closed loop, and the outcomes are significantly better, but it’s still important to note that the human is still ultimately in control and responsible for keeping an eye on their system.

That’s one of the things I’ve been thinking about lately: the need to set expectations when a loop comes out on the commercial market and is more widely available. A closed loop is a tool, but it’s not a cure. Managing type 1 diabetes will still require a lot of work, even with a polished commercial APS: you’ll still need to deal with BG checks, CGM calibrations, site changes, dealing with sites and sensors that fall out or get ripped out…  And of course there will still be days where you’re sensitive or resistant and BGs are not perfect for whatever reason. In addition, it will take time to transition from the standard of care as we have it today (pump, CGM, but no algorithms and no connected devices) to open and/or closed loops.

This is one of the things among many that we are hoping to help the diabetes community with as a result of the many (80+ as of June 8, 2016!) users with #OpenAPS. We have learned a lot about trusting a closed loop system, about what it takes to transition, how to deal if the system you trust breaks, and how to use more data than you’re used to getting in order to improve diabetes care.

As a step to helping the healthcare provider community start thinking about some of these things, the #OpenAPS community submitted a poster that was accepted and will be presented this weekend at the 2016 American Diabetes Association Scientific Sessions meeting. This will be the first data published from the community, and it’s significant because it’s a study BY the community itself. We’re also working with other clinical research partners on various studies (in addition to the usability study, other studies to more thoroughly examine data from the community) for the future, but this study was a completely volunteer DIY effort, just like the entire OpenAPS movement has been.

Our hope is that clinicians walk away this weekend with insight into how engaged patients are and can be with their care, and a new way of having conversations with patients about the tools they are choosing to use and/or build. (And hopefully we’ll help many of them develop a deeper understanding of how artificial pancreas technology works: #OpenAPS is a great learning tool not only for patients, but also for all the physicians who have not had any patients on artificial pancreas systems yet.)

Stay tuned: the poster is embargoed until Saturday morning, but we’ll be sharing our results online beginning this weekend once the embargo lifts! (The hashtag for the conference is #2016ADA, and we’ll of course be posting via @OpenAPS and to #OpenAPS with the data and any insights coming out of the conference.)

The second year of #DIYPS (and my first full year with a closed loop)

As we developed #DIYPS from a louder alarm system to a proactive alert system (details here about the original #DIYPS system before we closed the loop) to a closed loop that would auto-adjust my insulin pump basal rates as-needed overnight, I have been tracking the outcomes.

There were the first few nights of “wow! this works! I wake up at night when I’m high/low”. Then there were the first 100 nights that involved more iteration, testing, and improvements as we built it out more. And then suddenly it had been a year of using #DIYPS, and it was awesome to see how my average BG and a1c were down – and stayed down – while equally as important, my % time in range was up and stayed up. Not to mention, the quality of life improvements of having better nights of sleep were significant.

Year two has been along the same lines – more improvements on A1c/average BGs, time in range, and sleep – but heavily augmented by the fact that I now have a closed loop. If you follow me on Twitter or have checked out the hashtag, you might be tired of seeing me post CGM graphs. At this point, they all look very similar:

(It’s worth noting that I still use #DIYPS, especially during the day to trigger “eating-soon” mode or basically get a snapshot glance at what my BGs are predicted to be, especially if I plan to go out without my loop in tow.)

In this past year, we also went from closing the loop with the #DIYPS algorithms (which required internet connectivity so I could tell the system when I was having carbs), to deciding we wanted to find a way to make it possible for more people to safely DIY a closed loop. (And, we feel very strongly that the DIY part of closing the loop is very important and deciding to do so is a very personal question.)

Thus, #OpenAPS was born in February 2015. Ben West spent a lot of time in 2015 building out the openaps toolkit to enable communication with diabetes devices to make things like closed loops possible. And so the first few months of #OpenAPS seemed slow, while we were busy working on the toolkit and finding ways to take what we learned with the #DIYPS closed loop and model a closed loop that didn’t require knowledge of carbs and could work without internet connectivity (see more about the #OpenAPS reference design here).

In July, we saw a tipping point – multiple other people began to close the loop, despite the fact that we didn’t have very much documented or available to guide them beyond the reference design. (These first couple of folks are incredible! Watch the #OpenAPS hashtag on Twitter to see them share some of their experiences.) With their help, the documentation has grown by leaps and bounds, as has the number of people who were subsequently able to close the loop.

As of 12/31/15 as I write this post, there are 22 people who have told me that they have a closed loop running that’s based on the OpenAPS reference design. I make a big deal about marking the date when I make a statement about the number of people running #OpenAPS (i.e. (n=1)*22), because every time I turn around, someone else seems to have done it!

It’s so exciting to see what’s happened in 2015, and what this type of #WeAreNotWaiting spirit has enabled. For Scott & me this year: we’ve climbed mountains around the world (from Machu Picchu to Switzerland), gotten married, changed jobs, and explored Europe together. Diabetes was there, but it wasn’t the focus.

There are dozens of other amazing stories like this in the #WeAreNotWaiting community. As we look to the new year, and I start to wonder about what might be next, I realize the speed of technology and the spirit of ingenuity in this community makes it impossible to predict exactly what we’ll see in 2016.

What I do know is this: we’ll see more people closing the loop, and we’ll see more ways to close the loop, using devices other than the Raspberry Pi, Carelink stick and Medtronic pump.  We’ll see more new ways to communicate with old & new diabetes devices and more ways to make the diabetes parts of our lives easier – all because #WeAreNotWaiting.

How to do “eating soon” mode – #DIYPS lessons learned

“Do you prebolus for meals with #DIYPS?”

The answer to this question is complicated for me. I don’t “prebolus” like most people do (meaning “take some or all of your meal insulin about 15 minutes before you eat”).

I do take insulin before a meal. In fact, I do it up to an hour before the meal starts, by setting my correction target BG from it’s usual range (usually 100-120) to 80. This usually means I’m usually doing anywhere from .5-1u or more of insulin prior to a meal. But the amount of insulin has no direct relationship with the total amount of carbs I’ll end up eating during the meal.

Does it work? Yes. Do I go low? No, because it is unlikely that I would get anywhere near 80 by the time my carbs kick in for a meal (15 minutes after I eat), and therefore the initial carbs are handled by that initial amount of insulin from the eating soon-bolus. (Last year, I wrote a post about “eating soon mode” under the guise of lessons learned about meal time with #DIYPS – if you want to read the reason behind WHY eating soon mode is key in more detail, you can definitely read the longer version of the post. It also links another key concept I’ve learned about called carbohydrate absorption rate.)

So, how can you manually do “eating soon” mode?

1. If you know you’re going to eat anywhere in the next hour, manually calculate a correction bolus with a target BG of 80. (Example – if your correction ratio is 1:40, and you are currently 120, that means you would give yourself 1u of insulin.) An hour, 45 minutes, 30 minutes – whatever you make work is better than not doing it!

2. Eat your meal and bolus normally, but use your IOB as part of your meal calculation so you don’t forget about that insulin you already have going. (Helpful if your pump tracks IOB and you use a bolus calculator feature, but if you take injections, keep in mind about the insulin you’ve already given for the meal – just subtract that amount (1u in above example) from what you’d otherwise inject for the meal.

Note: if you use eating soon mode, you might want to delay the last unit or two of your meal insulin until after you see BGs rise, since sometimes you need less total insulin for the meal if you get insulin active early. (Often, we PWDs may overcompensate with more insulin than we need because it’s not timed correctly compared to the carb absorption rate.)

Example:

  • 5pm – You’re planning to eat around 5:30 or 6pm. Your BG is 120 and your correction ratio is 1:40. Setting your correction target to 80, that means you take 1u of insulin.
  • 6pm – You sit down to eat. Looking at your meal, you see 45 carbs and decide, with a carb ratio of 1:10, that you would take 4.5 units for the meal. Keeping in mind your earlier bolus of 1u, you end up taking 3.5 units for the meal. (4.5 total – 1u prebolus = 3.5 more units needed to cover the meal, see above note about considering delaying a unit or two of that bolus until you see your BGs impacted by carbs).

Result? You should have less of a spike from your carbs kicking in 15 minutes after you eat. It won’t always completely eliminate a spike, but it will provide a flattening effect. This is part of how I’m able to eat large (like 120g of gluten free pizza) meals and have flat or mostly flat BGs, and this is also one of the reasons I think using #DIYPS has dramatically improved my eAG and a1cs.