New Research Shows Most People With Exocrine Pancreatic Insufficiency (EPI) Are Not Taking Enough Enzymes

Last year when I was diagnosed with exocrine pancreatic insufficiency (known as EPI or PEI), I quickly noticed that many people in the online social media community I joined didn’t seem to have their pancreatic enzyme replacement therapy (PERT) working effectively for them.

Possibly because I have been counting carbohydrates and dosing insulin using a ratio of insulin to carbohydrates for ~20+ years (for type 1 diabetes), it came intuitively to me to try to develop ratios of the amount of enzymes compared to the amount of macronutrients I was consuming, For me, it worked really well (and you can read more about my methods for titrating enzymes and/or check out PERT Pilot if you have an iOS phone, which helps automating the dosing calculations based on logging what you eat).

However, I was surprised at how many people still seemed to share online that their PERT wasn’t working or that they still had symptoms. It made me curious: were these folks all newly diagnosed? How long does it take for most people to titrate their enzymes (e.g. arrive at an ideal dose or dosing strategy)? There seemed to be a mismatch between what I was seeing in real life in these communities versus what was in the medical literature about typical dosing of enzymes and expected outcomes for this community.

And so, I set out to do a survey to learn more. I sought permission from the administrators of the Facebook group, designed the survey, got the administrators’ feedback and incorporated it, had a few people trial the survey, and then shared it in the Facebook group and on Twitter.

I ended up closing the survey after 3 weeks and 111 responses, although I wish I had left it open to collect more data. I was so excited to analyze the data and get it published!

…but I forgot how long and silly the traditional medical literature publishing process is. I just now got this article published, almost a year later! Sigh. Anyway, this post is to share what we learned from the EPI Community survey and what I think people – both people with EPI and clinicians – should do based on this information.

(PS – the full research paper is available here and is open access and free to read anytime! Big thanks to Dr. Arsalan Shahid for collaborating with me on writing up the results and getting this published.

Below is a plain language summary that I wrote for those who don’t want to read the full paper.)

Understanding who took the EPI Community survey

First things first, it’s helpful to understand who ended up taking the survey to help us understand the results.

111 people with EPI filled out the survey. Most (93%) were female, and most happened to be in North America. So, this survey won’t necessarily represent the entire EPI community, based on the small sample size and the demographic makeup. (That being said, I found a previous EPI study on a smaller sample size with a majority of male participants where the findings matched pretty similarly, so I don’t think gender played a large role in the results).

But I was interested to see that the ages ended up being pretty balanced: the largest group was between 55 and 64 years (27%) followed by 65-74 (23%); 45-54 (21%); 34-44 (16%); 25-34 (6%); 75+ (5%); and 18-24 (2%). Also, the duration of how long people had EPI was also fairly distributed: diagnosed within 0-6 months (27%);  1-2 years (25%); 5+ years and 3-5 years (both 18%); or 6 months – 1 year (12%). This was all coincidental, as I did not do any particular recruitment based on age groups or length of EPI.

I was also interested and a little surprised to look at the list of other conditions that people have. 68% of people mentioned at least one other condition. Remember, we had 111 participants – and 26 of them (35%) mentioned having diabetes of any type. The next most common was celiac (10 people), followed by chronic pancreatitis (8 people) and acute pancreatitis (4 people).

This is compelling additional evidence supporting my recent systematic review that shows a higher prevalence of EPI among people with diabetes, and also adds to my argument that chronic pancreatitis and cystic fibrosis are likely NOT the biggest co-conditions associated with EPI. No, this study is not necessarily a representative sample of EPI, but this is more evidence added to these arguments. People with diabetes, celiac, and other conditions presenting with GI symptoms should be screened for EPI.

Understanding the Elastase in the EPI Community

The most common diagnosis test for EPI is the fecal elastase test. Most participants in this survey (all but 15 people) had their elastase tested, although not everyone shared the number or remembered what it was. 76 people shared their elastase results, so the sub-analyses related to elastase are based on this group rather than the overall survey participant number (111).

Of those who reported their elastase, the average was 92 (with a standard deviation of 57).

Remember that the diagnostic criteria for EPI say that anything <200 is considered to be EPI, with 100-200 being “mild/moderate” and <100 being “severe”, although the categorization technically doesn’t change anything including how much enzymes are given to people. (That being said, though, it shows that the majority of people surveyed do have severe EPI, which helps counter potential pushback on this survey that people with only slightly lowered elastase don’t have EPI. Many of us with elastase in the mild/moderate category, myself included, show clear response to symptoms on PERT no matter what the elastase number says, but there seems to be some resistance in the clinical community to prescribing PERT when elastase is 100-200.)

I ended up reviewing the elastase data by age group and also by duration of EPI (meaning how long people have had EPI). A statistical test showed that as age increases, elastase levels tend to decrease. That wasn’t surprising to me as many studies that I have read also show that older adults are more likely to have lowered elastase. I also ran a statistical test that showed that people who have had EPI for longer are more likely to have reported lowered elastase levels, again matching previous studies.

If you look at Table 1 in the paper, you can see the breakdown of enzyme dosing for meals and snacks for each of the duration sub-groups. I chose 0-6 months, 6 months to 1 year, 1 to 2 years, 3-5 years, and 5+ years as the duration groups to ask people about. In the elastase column you can clearly see that elastase lowers over the duration groups, too. You can also see the varied enzyme dosing (with standard deviations) by groups, too. Interestingly, the 0-6 month group takes the highest average enzyme dose, followed by the 5+ year group, with lower amounts in the other groups. This I haven’t seen reported in the literature as I haven’t found any other studies evaluating enzyme dosing in the real world nor any breakdowns by duration of EPI, so this would be interesting to repeat in a study that better controls for variables of age and duration of EPI.

We did not observe a statistical correlation between enzymes taken for meals or snacks and elastase levels. That didn’t surprise me personally because the enzyme dosing guidelines are not different based on elastase levels (e.g. people with elastase <100 or between 100-200 are given the same dose).

What Enzymes Are People Taking, And What About the Cost of PERT?

I had hypothesized that maybe some people adjust their meals in order to reduce enzyme cost, because PERT can be expensive.

Most people (100, which is 90% of participants) do take enzymes, and 87% are taking prescription enzymes. The results of what people take prescription-wise in terms of brand is likely influenced by the order in which the prescription options entered the US market, given that most participants are in North America. 5 people reported taking OTC enzymes only (see my comments about over the counter or OTC enzymes here), and 7 people take a combination of prescription and OTC. The biggest reason people reported taking OTCs or a mix was that the enzyme prescription was not written so that they had enough to cover a full month (which means they are not getting enough prescription enzymes from their doctor, and their prescription should be increased). 7 people also indicated that lack of insurance coverage for prescription enzymes was an issue and that even OTC enzymes were expensive for them. Otherwise, for those taking prescription enzymes, 40% have insurance and said the cost was reasonable for them; 32% find the cost of prescription enzymes expensive even with insurance.

Based on my curiosity, I had asked people how often cost played a role in choosing what to eat and/or how much enzymes to take, 32% of people said ‘yes often”, 20% said sometimes, and 40% said they do not change what they eat in order to change the amount of enzymes they’re taking.

Again, this is primarily in North America where PERT can be very expensive, so the results in other geographic regions with different health plans and coverage options for PERT would likely be very different to those questions about cost and modifying food and PERT intake!

People With EPI Are Not Taking Enough Enzymes

Here’s where I was most surprised by the data:

I knew anecdotally that  many people with EPI weren’t taking enough enzymes, but this survey showed that only 1 in 5 people believe that they are always taking enough enzymes! Another 1 in 5 people said they are usually not taking enough, and the remaining 3 of 5 people think they take enough most of the time but not always.

Additionally, the data from this survey shows that the longer duration of EPI was correlated with taking less enzymes per meal. It’s possible that people were taking enough but their elastase production lowered further over time, and they did not (or were not able to due to lack of healthcare provider support for updating prescriptions) update their dosing over time, which I think would be another interesting area for future studies.

On average, individuals who reported their elastase levels were taking 64,303 (SD: ±39,980) units of lipase per meal (minimum 0; maximum 180,000). There were 14 participants who reported taking less than or equal to 30,000 units of lipase per meal; 7 participants reported taking between 30,000 and 40,000 units of lipase per meal; 6 participants who reported between 40-50,000 units of lipase per meal and 44 participants who reported taking >=50,000 units of lipase per meal. What do these numbers mean? Well, most dosing guidelines recommend a starting dose of 40-50,000 units of lipase per meal, so this means that the majority of people are taking at least the recommended starting dose (or higher), whereas about a third are taking well under even the recommended starting dose (more from me here in this blog about starting dose and the ranges people should increase to).

It probably will surprise a lot of clinicians to see that the average intake was around 64,000 units of lipase (with a large standard deviation, which means there was a lot of variance in dose sizes). It’s surprising because this is above the typical starting dose yet the majority of this population, as described above, is still experiencing symptoms and still not always taking enough enzymes to manage these symptoms

It’s also worth noting that most people said they still have not arrived at the ideal enzyme dosing: 42% said they still weren’t there yet. For those who thought they did have the ideal enzyme dosage, it took anywhere from a few weeks (16%) to a few months (20%); more than 6 months (10%), more than a year (10%) or even up to a few years (3%).

In summary:


People with EPI are not taking enough enzymes; are not arriving at an ideal dose quickly; and it is absolutely worth it for any clinician who sees someone with EPI – even someone who has been diagnosed by another clinician or had EPI for a long time – to check to see whether their prescription is meeting their needs and/or whether they need support in increasing their dose to resolve symptoms!

Recommended Takeaways From This Study

 

Patients (aka, people living with EPI):

  • If you are still experiencing symptoms, you may need to take more enzymes. The starting doses should be around 40-50,000 and it’s common for many people to need even larger doses. Based on this study, some people take up to 180,000 units per meal!
  • Talk to your doctor if you need your script adjusted, and remember PERT pills come in different sizes so you may be able to get a higher pill size (which holds more enzymes) so you have to take fewer pills per meal.
  • If your doctor seems resistant to adjusting your prescription, I have citations in this blog post that you can share listing out the various guidelines that point to 40-50,000 units of lipase being the starting dose with guidelines to increase up to 2-3x as needed based on the individual’s symptoms – share those guidelines/citations with your clinician if needed.
  • Over time, it is possible you will need to change your enzyme dosing as your body changes.

 

Doctors who treat people living with EPI

  • Other studies show that the majority of people with EPI are undertreated, even when compared to the baseline level of starting doses. This survey shows most people need more than the ‘starting dose’, so don’t be surprised and also proactively talk with patients about increasing enzyme doses and how to do so, and be prepared to update prescriptions for PERT over time.
  • Treat people with mild/moderate EPI (fecal elastase results 100-200, and not just those <100). The symptom burden of EPI is pretty significant even in those of us with mild/moderate EPI. Yes, PERT can be expensive, but let patients make the choice to treat/manage and don’t make the choice for them by refusing to prescribe PERT for elastase <200.
  • If symptoms aren’t resolved on the initial dose given, follow the guidelines for increasing the doses 2-3x from the starting 40-50,000 dose before considering adding a PPI or investigating other causes after that. But, dropping PERT after a short trail of a dose of <40,000 is not an approved nor evidence-based approach to treating EPI. Dose according to the starting guidelines and follow up or explain to your patients how to follow up on their own in order to increase their prescription as needed. Think of PERT similarly to insulin, where dosing is also self-managed by patients at every meal.
  • Speaking of insulin and diabetes: EPI occurs in more people than you think, and people with diabetes and celiac and other conditions need to be screened for EPI. Chronic pancreatitis is not the leading cause of EPI.

The paper described in this blog post can be accessed here for free – it’s open access!

You can cite it as:

Lewis DM, Shahid A. Survey on Pancreatic Enzyme Replacement Therapy Dosing Experiences of Adults with Exocrine Pancreatic Insufficiency. Healthcare 2023, 11,2316. https://doi.org/10.3390/healthcare11162316


Want to read more about EPI? Check out DIYPS.org/EPI for other posts I have written about my personal experiences with EPI and PERT, plus links to my other EPI-related research papers (with more on the way!)

A blue square with white text that says "New Research: Most people with EPI (PEI) are not taking enough enzymes", a blog post by Dana M. Lewis

What I’ve Learned From 5,000 Pills Of Pancreatic Enzyme Replacement Therapy (PERT) For Exocrine Pancreatic Insufficiency (EPI/PEI)

I recently reached a weird milestone that no one likely cares about, but that I find fascinating: in the first 534 days of exocrine pancreatic insufficiency (EPI / PEI), I’ve taken more than 5,000 pills of pancreatic enzyme replacement therapy (PERT).

That’s an average of 9.41 pills per day!

PERT (enzymes) helps my body successfully digest the food that I eat, because my pancreas is no longer producing enough enzymes. Like insulin treatment for diabetes, PERT will be a lifelong necessity for me: this number of pills consumed is one that only goes up from here.

Here’s a look at what the pills per day intake has looked like over this time:

  • Min: 2 (early days)
  • Max: 72 (hello, outlier of two ultramarathons! One was 62 miles, the other was 82 miles! Other 30-40+ pill days are likely also ultra 🏃🏼‍♀️ training days, e.g. around 50k of running, which is still 8-9 hours of running and fueling every 30 minutes)
  • Median: 8

Analyzing a graph of my daily PERT enzyme pills, there are noticeable spikes, particularly around my ultramarathon training days. Two distinct spikes at 72 pills per day correspond to my 100k (62 mile) and 82-mile ultra runs.

Here is a graph showing my PERT (enzyme) pills per day totals, there are a few noticeable spikes in the 20-40ish range that are likely ultra training days. The two spikes around 72/day are my 100k (62 mile) and 82 mile ultra runs.

Why so many pills?!

Not everyone with EPI takes as many pills as I do. The number is titrated (adjusted) based on what and how often I eat. A typical meal for me requires 2-3 prescription pills of PERT.

In my case, I sometimes use over-the-counter (OTC) enzymes to ‘top off’ a prescription pill.

For hikes and runs, which I do 4-5 times each week, I eat small amounts every 30 minutes if I’m out for more than 2 hours, which is 3+ times a week. For a run of 5 hours, where I consume 10 snacks, I’d use 10 pills if I went the prescription route. In contrast, I usually use 2-4 OTC pills per snack, which combined costs an average of $0.70. That means $7 in enzyme costs for 5 hours compared to $80 if I had taken prescription PERT! Multiply times several times a week, and you can see why I choose this strategy.

Balancing Cost ($) and Convenience (Fewer Pills)

The “cost” for using OTC pills, though, is 20-40 pills ($7) instead of 10 pills ($80). On a day-to-day basis, my choice depends on convenience, how confident I am in my counts/dosing (I’m very confident for hike/run pre-portioned snacks that I’ve tested rigorously), and other factors.

Increasingly, when I’m not pursuing physical activity, I’m more likely to choose fewer pills at the financial cost of prescription PERT. I’d like to choose fewer pills for physical activity, too, which is why I’ve recently shifted to a slightly more expensive OTC pill that has more enzymes in it, in order to take 1 pill for most snacks instead of 2-4. In a typical long run of 4 hours, for example, instead of 7 snacks resulting in 28 pills, those 7 snacks would instead result in 7 pills! (There’s also a challenge with finding these particular OTC pills, as prescription pill shortage has driven more people to try OTCs and now the OTC pills I prefer are regularly out of stock, too. If you’re curious about using OTC pills with EPI, or prior to a diagnosis of EPI, you may be interested in this post where I describe in more detail using over the counter (OTC) enzyme pills for this purpose.)

Long run days are outliers in my pill count per day numbers and graphs. However, even if I skipped those and only took 8 prescription PERT per day, I’d still have consumed over 4,200 enzyme pills at this point.

EPI or PEI leads to a lot of pill-swallowing, regardless of whether you’re using over the counter enzymes or prescription enzymes.

But they work! Oh, do they work. My GI symptoms used to be most days a week and caused me to feel miserable (read about my experience getting diagnosed with EPI here). Now, I rarely have any symptoms, and when they do occur (likely mistiming a dose compared to what I was eating or taking not quite enough to match what I was eating), they are significantly less bothersome. It’s awesome, and I feel back to “normal” for me well before all of my GI symptoms started years ago! So yes, I have to swallow many pills a day for EPI but my symptoms are completely and regularly managed as a result and my quality of life is back to being what it was before.

If you’re curious to read more about my experiences with EPI, or posts about adjusting enzymes to match what you’re eating, check out DIYPS.org/EPI for a list of other EPI related posts.

If you have EPI and have an iOS device, you also might be interested in checking out PERT Pilot, a free iOS app to track food intake and PERT dosing and outcomes.

You’d Be Surprised: Common Causes of Exocrine Pancreatic Insufficiency

Academic and medical literature often is like the game of “telephone”. You can find something commonly cited throughout the literature, but if you dig deep, you can watch the key points change throughout the literature going from a solid, evidence-backed statement to a weaker, more vague statement that is not factually correct but is widely propagated as “fact” as people cite and re-cite the new incorrect statements.

The most obvious one I have seen, after reading hundreds of papers on exocrine pancreatic insufficiency (known as EPI or PEI), is that “chronic pancreatitis is the most common cause of exocrine pancreatic insufficiency”. It’s stated here (“Although chronic pancreatitis is the most common cause of EPI“) and here (“The most frequent causes [of exocrine pancreatic insufficiency] are chronic pancreatitis in adults“) and here (“Besides cystic fibrosis and chronic pancreatitis, the most common etiologies of EPI“) and here (“Numerous conditions account for the etiology of EPI, with the most common being diseases of the pancreatic parenchyma including chronic pancreatitis, cystic fibrosis, and a history of extensive necrotizing acute pancreatitis“) and… you get the picture. I find this statement all over the place.

But guess what? This is not true.

First off, no one has done a study on the overall population of EPI and the breakdown of the most common co-conditions.

Secondly, I did research for my latest article on exocrine pancreatic insufficiency in Type 1 diabetes and Type 2 diabetes and was looking to contextualize the size of the populations. For example, I know overall that diabetes has a ~10% population prevalence, and this review found that there is a median prevalence of EPI of 33% in T1D and 29% in T2D. To put that in absolute numbers, this means that out of 100 people, it’s likely that 3 people have both diabetes and EPI.

How does this compare to the other “most common” causes of EPI?

First, let’s look at the prevalence of EPI in these other conditions:

  • In people with cystic fibrosis, 80-90% of people are estimated to also have EPI
  • In people with chronic pancreatitis, anywhere from 30-90% of people are estimated to also have EPI
  • In people with pancreatic cancer, anywhere from 20-60% of people are estimated to also have EPI

Now let’s look at how common these conditions are in the general population:

  • People with cystic fibrosis are estimated to be 0.04% of the general population.
    • This is 4 in every 10,000 people
  • People with chronic pancreatitis combined with all other types of pancreatitis are also estimated to be 0.04% of the general population, so another 4 out of 10,000.
  • People with pancreatic cancer are estimated to be 0.005% of the general population, or 1 in 20,000.

What happens if you add all of these up: cystic fibrosis, 0.04%, plus all types of pancreatitis, 0.04%, and pancreatic cancer, 0.005%? You get 0.085%, which is less than 1 in 1000 people.

This is quite a bit less than the 10% prevalence of diabetes (1 in 10 people!), or even the 3 in 100 people (3%) with both diabetes and EPI.

Let’s also look at the estimates for EPI prevalence in the general population:

  • General population prevalence of EPI is estimated to be 10-20%, and if we use 10%, that means that 1 in 10 people may have EPI.

Here’s a visual to illustrate the relative size of the populations of people with cystic fibrosis, chronic pancreatitis (visualized as all types of pancreatitis), and pancreatic cancer, relative to the sizes of the general population and the relative amount of people estimated to have EPI:

Gif showing the relative sizes of populations of people with cystic fibrosis, chronic pancreatitis, pancreatic cancer, and the % of those with EPI, contextualized against the prevalence of these in the general population and those with EPI. It's a small number of people because these conditions aren't common, therefore these conditions are not the most common cause of EPI!

What you should take away from this:

  • Yes, EPI is common within conditions such as cystic fibrosis, chronic pancreatitis (and other forms of pancreatitis), and pancreatic cancer
  • However, these conditions are not common: even combined, they add up to less than 1 in 1000!
  • Therefore, it is incorrect to conclude that any of these conditions, individually or even combined, are the most common causes of EPI.

You could say, as I do in this paper, that EPI is likely more common in people with diabetes than all of these conditions combined. You’ll notice that I don’t go so far as to say it’s the MOST common, because I haven’t seen studies to support such a statement, and as I started the post by pointing out, no one has done studies looking at huge populations of EPI and the breakdown of co-conditions at a population level; instead, studies tend to focus on the population of a co-condition and prevalence of EPI within, which is a very different thing than that co-condition’s EPI population as a percentage of the overall population of people with EPI. However, there are some great studies (and I have another systematic review accepted and forthcoming on this topic!) that support the overall prevalence estimates in the general population being in the ballpark of 10+%, so there might be other ‘more common’ causes of EPI that we are currently unaware of, or it may be that most cases of EPI are uncorrelated with any particular co-condition.

(Need a citation? This logic is found in the introduction paragraph of a systematic review found here, of which the DOI is 10.1089/dia.2023.0157. You can also access a full author copy of it and my other papers here.)

New Systematic Review of Exocrine Pancreatic Insufficiency (EPI) In Type 1 Diabetes and Type 2 Diabetes – Focusing on Prevalence and Treatment

I’m thrilled that the research I did evaluating the prevalence and treatment of EPI in both Type 1 diabetes and Type 2 diabetes (also presented as a poster at #ADA2023 – read a summary of the poster here) has now been published as a full systematic review in Diabetes Technology and Therapeutics.

Here is a pre-edited submitted version of my article that you can access if you don’t have journal access; and as a reminder, copies of ALL of my research articles are available on this page: DIYPS.org/research!

And if you don’t want to read the full paper, this is what I think you should take away from it as a person with diabetes or as a healthcare provider:

    1. What is EPI? 

      Exocrine pancreatic insufficiency (known as EPI in some places, and PEI or PI in other places) occurs when the pancreas no longer produces enough enzymes to digest food. People with EPI take pancreatic enzyme replacement therapy (PERT) whenever they eat (or drink anything with fat/protein).

    2. If I have diabetes, or treat people with diabetes, why should I be reading the rest of this about EPI?EPI often occurs in people with cystic fibrosis, pancreatitis, and pancreatic cancer. However, since these diseases are rare (think <0.1% of the general population even when these groups are added up all together), the total number of people with EPI from these causes is quite low. On the other hand, EPI is also common in people with diabetes, but this is less well-studied and understood. The research on other co-conditions is more frequent and often people confuse the prevalence WITHIN those groups with the % of those conditions occurring overall in the EPI community.This paper reviews every paper that includes data on EPI and people with type 1 diabetes or type 2 diabetes to help us better understand what % of people with diabetes are likely to face EPI in their lifetime.
    3. How many people with type 1 diabetes or type 2 diabetes (or diabetes overall) get EPI?TLDR of the paper: EPI prevalence in diabetes varies widely, reported between 5.4% and 77% when the type of diabetes isn’t specified. For Type 1 diabetes, the median EPI prevalence is 33% (range 14-77.5%), and for Type 2 diabetes, the median is 29% (range 16.8-49.2%). In contrast, in non-diabetes control groups, the EPI prevalence ranges from 4.4% to 18% (median 13%). The differences in ranges might be due to geographic variability and different exclusion criteria across studies.Diabetes itself is prevalent in about 10% of the general population. As such, I hypothesize that people with diabetes likely constitute one of the largest sub-groups of individuals with EPI, in contrast to what I described above might be more commonly assumed.
    4. Is pancreatic enzyme replacement therapy (PERT) safe for people with diabetes? 

      Yes. There have been safety and efficacy studies in people with diabetes with EPI, and PERT is effective just like in any other group of people with EPI.

    5. What is the effect of pancreatic enzyme replacement therapy (PERT) on glucose levels in people with diabetes?
      PERT itself does not affect glucose levels, but PERT *d0es* impact the digestion of food, which then changes glucose levels! So, most PERT labels warn to watch for hypoglycemia or hyperglycemia but the medicine itself doesn’t directly cause changes in glucose levels. You can read a previous study I did here using CGM data to show the effect of PERT actually causing improved glucose after meals in someone with Type 1 diabetes. But, in the systematic review, I found only 4 articles that even made note of glucose levels, and only 1 (the paper I linked above) actually included CGM data. Most of the studies are old, so there are no definitive conclusions on whether hypoglycemia or hyperglycemia is more common when a person with diabetes and EPI starts taking PERT. Instead, it’s likely very individual depending on what they’re eating, insulin dosing patterns before, and whether they’re taking enough PERT to match what they’re eating.TLDR here: more studies are needed because there’s no clear single directional effect on glucose levels from PERT in people with diabetes.Note: based on the n=1 study above, and subsequent conversations with other people with diabetes, I hypothesize that high variability and non-optimal post-meal glucose outcomes may be an early ‘symptom’ of EPI in people with diabetes. I’m hoping to eventually generate some studies to evaluate whether we could use this type of data as an input to help increase screening of EPI in people with diabetes.
    6. How common is EPI (PEI / PI) compared to celiac and gastroparesis in Type 1 diabetes and Type 2 diabetes? 

      As a person with (in my case, Type 1) diabetes, I feel like I hear celiac and gastroparesis talked about often in the diabetes community. I had NEVER heard of EPI prior to realizing I had it. Yet, EPI prevalence in Type 1 and Type 2 diabetes is much higher than that of celiac or gastroparesis!The prevalence of EPI is much higher in T1 and T2 than the prevalence of celiac and gastroparesis.Celiac disease is more common in people with diabetes (~5%) than in the general public (0.5-1%). Gastroparesis, when gastric emptying is delayed, is also more common in people with diabetes (5% in PWD).However, the  prevalence of EPI is 14-77.5% (median 33%) in Type 1 diabetes and 16.8-49.2% (median 29%) in Type 2 diabetes (and 5.4-77% prevalence when type of diabetes was not specified). This again is higher than general population prevalence of EPI.

      This data emphasizes that endocrinologists and other diabetes care providers should be more prone to initiate screening (using the non-invasive fecal elastase test) for individuals presenting with gastrointestinal symptoms, as the rates of EPI in diabetes are much higher in both Type 1 and Type 2 diabetes than the rates of celiac and gastroparesis.

    7. What should I do if I think I have EPI?
      Record your symptoms and talk to your doctor and ask for a fecal elastase (FE-1) screening test for EPI. It’s non-invasive. If your results are less than or equal to 200 (μg/g), this means you have EPI and should start on PERT. If you or your doctor feel that your sample may have influenced the results of your test, you can always re-do the test. But if you’re dealing with diarrhea, going on PERT may resolve or improve the diarrhea and improve the quality of the sample for the next test result. PERT doesn’t influence the test result, so you can start PERT and re-run the test any time.Symptoms of EPI can vary. Some people experience diarrhea, while others experience constipation. Steatorrhea or smelly, messy stools that stick to the side of the toilet are also common EPI symptoms, as is bloating, abdominal pain, and generally not feeling well after you eat.

      If you’ve been diagnosed with EPI, you may also want to check out some of my other posts (DIYPS.org/EPI) about my personal experiences with EPI and also this post about the amount of enzymes needed by most people with EPI. You may also want to check out PERT Pilot, a free iOS app, for recording and evaluating your PERT dosing.

If you want to read the full article, you can find copies of all of my research articles at DIYPS.org/research

If you’d like to cite this specific article in your future research, here’s an example citation:

Lewis, D. A Systematic Review of Exocrine Pancreatic Insufficiency Prevalence and Treatment in Type 1 and Type 2 Diabetes. Diabetes Technology & Therapeutics. http://doi.org/10.1089/dia.2023.0157

Exocrine Pancreatic Insufficiency (EPI/PEI) In Type 1 and Type 2 Diabetes – Poster at #ADA2023

When I was invited to contribute to a debate on AID at #ADA2023 (read my debate recap here), I decided to also submit an abstract related to some of my recent work in researching and understanding the prevalence and treatment of exocrine pancreatic insufficiency (known as EPI or PEI or PI) in people with diabetes.

I have a personal interest in this topic, for those who aren’t aware – I was diagnosed with EPI last year (read more about my experience here) and now take pancreatic enzyme replacement therapy (PERT) pills with everything that I eat.

I was surprised that it took personal advocacy to get a diagnosis, and despite having 2+ known risk factors for EPI (diabetes, celiac disease), that when I presented to a gastroenterologist with GI symptoms, EPI never came up as a possibility. I looked deeper into the research to try to understand what the correlation was in diabetes and EPI and perhaps understand why awareness is low compared to gastroparesis and celiac.

Here’s what I found, and what my poster (and a forthcoming full publication in a peer-reviewed journal!) is about (you can view my poster as a PDF here):

1304-P at #ADA2023, “Exocrine Pancreatic Insufficiency (EPI / PEI)  Likely Overlooked in Diabetes as Common Cause of Gastrointestinal-Related Symptoms”

Exocrine Pancreatic Insufficiency (EPI / PEI / PI) occurs when the pancreas no longer makes enough enzymes to support digestion, and is treated with pancreatic enzyme replacement therapy (PERT). Awareness among diabetes care providers of EPI does not seem to match the likely rates of prevalence and contributes to underscreening, underdiagnosis, and undertreatment of EPI among people with diabetes.

Methods:

I performed a broader systematic review on EPI, classifying all articles based on co-condition. I then did a second specific diabetes-specific EPI search, and de-duplicated and combined the results. (See PRISMA figure).

A PRISMA diagram showing that I performed two separate literature searches - one broadly on EPI before classifying and filtering for diabetes, and one just on EPI and diabetes. After filtering out irrelevant, animal, and off topic papers, I ended up with 41

I ended up with 41 articles specifically about EPI and diabetes, and screened them for diabetes type, prevalence rates (by type of diabetes, if it was segmented), and whether there were any analyses related to glycemic outcomes. I also performed an additional literature review on gastrointestinal conditions in diabetes.

Results:

From the broader systematic review on EPI in general, I found 9.6% of the articles on specific co-conditions to be about diabetes. Most of the articles on diabetes and EPI are simply about prevalence and/or diagnostic methods. Very few (4/41) specified any glycemic metrics or outcomes for people with diabetes and EPI. Only one recent paper (disclosure – I’m a co-author, and you can see the full paper here) evaluated glycemic variability and glycemic outcomes before and after PERT using CGM.

There is a LOT of work to be done in the future to do studies with properly recording type of diabetes; using CGM and modern insulin delivery therapies; and evaluating glycemic outcomes and variabilities to actually understand the impact of PERT on glucose levels in people with diabetes.

In terms of other gastrointestinal conditions, healthcare providers typically perceive the prevalence of celiac disease and gastroparesis to be high in people with diabetes. Reviewing the data, I found that celiac has around ~5% prevalence (range 3-16%) in people with type 1 diabetes and ~1.6% prevalence in Type 2 diabetes, in contrast to the general population prevalence of 0.5-1%. For gastroparesis, the rates in Type 1 diabetes were around ~5% and in Type 2 diabetes around 1.3%, in contrast to the general population prevalence of 0.2-0.9%.

Speaking of contrasts, let’s compare this to the prevalence of EPI in Type 1 and Type 2 diabetes.

  • The prevalence of EPI in Type 1 diabetes in the studies I reviewed had a median of 33% (range 14-77.5%).
  • The prevalence of EPI in Type 2 diabetes in the studies I reviewed had a median of 29% (16.8-49.2%).

You can see this relative prevalence difference in this chart I used on my poster:

The prevalence of EPI is much higher in T1 and T2 than the prevalence of celiac and gastroparesis.

Key Findings and Takeaways:

Gastroparesis and celiac are often top of mind for diabetes care providers, yet EPI may be up to 10 times more common among people with diabetes! EPI is likely significantly underdiagnosed in people with diabetes.

Healthcare providers who see people with diabetes should increase the screening of fecal elastase (FE-1/FEL-1) for people with diabetes who mention gastrointestinal symptoms.

With FE-1 testing, results <=200 μg/g are indicative of EPI and people with diabetes should be prescribed PERT. The quality-of-life burden and long-term clinical implications of undiagnosed EPI are significant enough, and the risks are low enough (aside from cost) that PERT should be initiated more frequently for people with diabetes who present with EPI-related symptoms.

EPI symptoms aren’t just diarrhea and/or weight loss: they can include painful bloating, excessive gas, changed stools (“messy”, “oily”, “sticking to the toilet bowl”), or increased bowel movements. People with diabetes may subconsciously adjust their food choices in response to symptoms for years prior to diagnosis.

Many people with diabetes and existing EPI diagnoses may be undertreated, even years after diagnosis. Diabetes providers should periodically discuss PERT dosing and encourage self-adjustment of dosing (similar to insulin, matching food intake) for people with diabetes and EPI who have ongoing GI symptoms. This also means aiding in updating prescriptions as needed. (PERT has been studied and found to be safe and effective for people with diabetes.)

Non-optimal PERT dosing may result in seemingly unpredictable post-meal glucose outcomes. Non-optimal postprandial glycemic excursions may be a ‘symptom’ of EPI because poor digestion of fat/protein may mean carbs are digested more quickly even in a ’mixed meal’ and result in larger post-meal glucose spikes.

As I mentioned, I have a full publication with this systematic review undergoing peer review and I’ll share it once it’s published. In the meantime, if you’re looking for more personal experiences about living with EPI, check out DIYPS.org/EPI, and also for people with EPI looking to improve their dosing with pancreatic enzyme replacement therapy – you may want to check out PERT Pilot (a free iOS app to record enzyme dosing).

Researchers, if you’re interested in collaborating on studies in EPI (in diabetes, or more broadly on EPI), please reach out! My email is Dana@OpenAPS.org

How To Talk To Your Doctor About Your Enzyme (PERT) Dosing If You Have Exocrine Pancreatic Insufficiency (EPI or PEI or PI)

In exocrine pancreatic insufficiency (EPI/PEI/PI), people are responsible for self-dosing their medication every time they eat something.

Doctors prescribe a starting dose, but a person with EPI determines each and every time they eat or drink something how many enzyme pills (of pancreatic enzyme replacement therapy, known as PERT) to take. Doctors often prescribe a low starting dose, and people have to try experimenting with multiple pills of the small size, and eventually work with their doctors to change their prescription to get a bigger pill size (so they can take fewer pills per meal) and the correct number of pills per day to match their needs.

For example, often people are prescribed one 10,000 unit pill per meal. The 10,000 units represents the amount of lipase (to help digest fat). There are also two other enzymes (protease, for protein digestion, and amylase, for carbohydrate digestion). They may be prescribed 1 pill per meal, which means 10,000 units of lipase per meal. But most dosing guidelines recommend starting at a dose of 40,000-50,000 units of lipase per meal (and people often need more), so it wouldn’t be surprising that someone prescribed one 10,000 pill per meal would need 4-5 pills of the 10,000 size pill PER MEAL, and times three meals per day (let alone any snacks), to get acceptable GI outcomes.

Mathematically, this means the initial prescription wouldn’t last long. The initial prescription for 1 pill per meal, with 3 meals a day, means 3 pills per day. 3 pills per day across a 30 day month is 90 pills. But when the pills per meal increase, that means the prescription won’t cover the entire month.

In fact, it would last a lot less than a month; closer to one week!

Showing that based on the number of pills and 3 meals per day, an intitial RX of 10,000 size pills may last more like a week rather than a full 30 days when the doctor is unaware of prescribing guidlines that typically suggest 40,000-50,000 per meal is needed as the starting meal dose.

Let’s repeat: with a too-small prescription pill size (e.g. 10,000 starting dose size) and count (e.g. 3 pills per day to cover 1 per meal) and with a person with EPI titrating themselves up to the starting dose guidelines in all of the medical literature, they would run out of their prescription WITHIN ONE WEEK. 

So. If you have EPI, you need to be prepared to adjust your dosing yourself; but you also need to be ready to reach out to your doctor and talk about your need for more enzymes and a changed prescription.

PERT (enzymes) come in different sizes, so one option is to ask for a bigger pill size and/or a different amount (count) per meal/day. Depending on the brand and the number of pills you need per meal, it could be simply going up to a bigger pill size. For example, if you need 3 pills of the 10,000 PERT size, you could move to a 36,000 pill size and take one per meal. If you find yourself taking 5 pills of the 10,000 PERT size, that might mean 2 pills of the 25,000 size. (Brands differ slightly, e.g. one might be 24,000 instead of 25,000, so the math may work out slightly differently depending on which brand you’re taking.)

Don’t be surprised if you need to do this within a week or two of starting PERT. In fact, based on the math above, especially if you’re on a much lower dose than starting guidelines (e.g. 40,000-50,000 units of lipase per meal), you should expect within a few days to need an updated prescription to make sure that you don’t run out of PERT.

If you do find yourself running out of PERT before you can get your prescription updated, there is an alternative you can consider: either substituting or adding on over the counter enzymes. The downsides include the fact that insurance doesn’t cover them so you would be paying out of pocket; plus there are no studies with these so you can’t (shouldn’t) rely on these as full 1:1 substitutes for prescription PERT without careful personal testing that you can do so. That being said, there is anecdotal evidence (from me, as well as hundreds of other people I’ve seen in community groups) that it is possible to use OTC enzymes if you can’t afford or can’t get a PERT prescription; or if you need to “top off”/supplement/add to your PERT because your prescription won’t last a full month and you can’t get a hold of your doctor or they won’t update your prescription.

For me, I generally evaluate the units of lipase (e.g. this kind is 17,000 units of lipase per pill) but then factor in for the lack of reliability for OTC and really treat it like it contains 13-15,000 units of lipase when choosing to take it. Similarly for another lipase-only OTC option (that has ~6,000 units per pill), I assume it acts like it only has ~5,000 units. Unlike insulin, there is little downside to taking a little too much of enzymes; but there is a LOT of downside to not taking enough, so my personal approach is that if in doubt, or on the fence, to round up (especially with OTC pills, which cost somewhere between $0.08/pill (lipase-only) to $0.34/pill (for the larger and multiple enzyme pill)).

So how do you talk to your doctor about needing more PERT?

It helps if you bring data and evidence to the conversation, especially if your doctor thinks by default that you don’t need more than what they initially prescribed. You can bring your personal data (more on that below and how to collect and present that), but you can also cite relevant medical literature to show if your dose is below standard starting guidelines.

Below I’ve shared a series of citations that show that the typical starting dose for people with EPI should be around 40,000-50,000 units of lipase per meal.

Important note that this is the STARTING DOSE SIZE, and most of these recommend further increasing of dose to 2-3 times this amount as needed. Depending on the starting dose size, you can see the chart I built below that illustrates with examples exactly how much this means one might need to increase to. Not everyone will need the upper end of the numbers, but if a doctor starts someone on 10,000 and doesn’t want to get them up to 40,000 (the lower end of starting doses) or go beyond 40,000 because it’s the starting dose, I’ve found this chart useful to show that numerically the range is a lot larger than we might assume.

Example of Titrating According to Common Dose Guidelines, Before Adding PPI

Examples of PERT starting doses of 25,000, 40,000, and 50,000 (plus half that for snacks) and what the dose would be if increased according to guidelines to 2x and 3x, plus the sum of the total daily dose needed at those levels.

Here are some citations that back up my point about 40,000-50,000 units of lipase being the typically recommended starting dose, including across different conditions (e.g. regardless of whether you have EPI + any of (chronic pancreatitis, diabetes, celiac, etc)).

  • Shandro et al, 2020, the median starting dose of 50,000 units per lipase “is an appropriate starting dose”, also citing UEG 2017 guidelines.
  • Forsmark et al, 2020, defined appropriate dose of PERT as >=120,000 units of lipase per day (e.g. 40,000 units of lipase per meal).
  • Whitcomb et al, 2022, in a joint American Gastroenterology Association and PancreasFest symposium paper, concur on 40,000 units as a starting dose and that “This dose should be titrated up as needed to reduce steatorrhea or gastrointestinal symptoms of maldigestion “
  • 2021 UK guidelines for EPI management suggest 50,000 units as the starting dose and emphasize that “all guidelines endorse dose escalation if the initial dose is not effective”

There are also many guidelines and research specific for EPI and different co-conditions supporting the ballpark of 40-50,000 units of lipase starting dose:

It is also worth noting that these guidelines also point out that after titrating 2-3x above the starting dose, PPI (proton pump inhibitors, to suppress acid) should be added if gastrointestinal symptoms are still not resolved. Anecdotally, it seems a lot of doctors are not aware that PPIs should be added if 3x the starting dose is not effective, so make sure to bring this up as well.

How to Share Your Personal PERT Data To Show How Much You Need

In addition to pointing out the guidelines (based on the above), it’s useful to share your data to show what you’ve been taking (dosing) and how it’s been working. I’ve written a lot about how you can do this manually, but I also recently created an iOS based app to make it easier to track what you’re eating, what you’re dosing in terms of PERT/enzymes, and what the outcome is. This app, PERT Pilot, is free to use, and it also enables you to visualize on a graph the relationship between what you’re eating and dosing.

PERT Pilot lets you track how many grams of fat each pill of your current prescription has been used for, so you can see with red and green coloring the relationship between meals that you’ve had symptoms after (in red) vs. when you recorded no symptoms (green). If you have a “convergence zone” of green and red in the same area, that may help you decide to change your ratio (e.g. dose more) around that amount, until you can comfortably and repeatedly get green results (no symptoms when you eat).

How you might use this to talk to your doctor

You can take a screenshot of your PERT Pilot graph and share it with your doctor to show them how many grams of fat your prescription size (e.g. pill size) effectively “covers” for you, and how many meals that you’ve tested it with.

Meals based on the ratio of fat:lipase and protein:protease mapped with color coded dots where green means no symptoms, orange means not sure if symptoms, and red means symptoms occurred and the dose likely didn't work at that ratio.For example, I was initially prescribed an enzyme dose that was one pill per meal (and no snacks), so I had 3 pills per day. But I quickly found myself needing two pills per meal, based on what I was typically eating. I summarized my data to my doctor, saying that I found one pill typically covered up to ~30 grams of fat per meal, but most of my meals were >30 grams of fat, so that I wanted to update my prescription to have an average of 2 pills per meal of this prescription size. I also wanted to be able to eat snacks, so I asked for 2 pills per meal, 1 per snack, which meant that my prescription increased to 8 pills per day (of the same size), to cover 2 pills x 3 meals a day (=6) plus up to 2 snacks (=2). I also had weeks of data to show that my average meal was >30 grams of fat to confirm that I need more than the amount of lipase I was originally prescribed. My doctor was happy to increase my prescription as a result, and this is what I’ve been using successfully for over a year ever since.

So in summary, the data that would be useful to share is:

  • How much one pill ‘covers’ (which is where the PERT Pilot graph can be used)
  • How many pills per meal you’ve been taking and how big your meals typically are
  • Whether you are struggling with the number of pills per meal: if so, ask whether there’s a larger pill size in your current brand that you could increase to, in order to reduce the number of pills per meal (and/or snack) you need to take every time

If you are told that you shouldn’t need “that much”, remember the above section and have those resources ready to discuss that the starting dose is often 40,000-50,000 per meal and that the guidelines say to titrate up to 3x that before adding PPI. Therefore, it would be expected for some people to need upwards of 600,000 units of lipase per day (50,000 starting dose, increased 3x per meal and half of the dose used per snack). Depending on what people eat, this could be even higher (because not everyone eats the same size meal and snack and many of us adjust dose based on what we eat).

Also, it is worth noting that the dosing guidelines never mention the elastase levels or severity of EPI: so PERT prescriptions should not be based on whether you have “moderate” or “severe” EPI and what your elastase level is (e.g. whether it’s 45 or 102 or 146 or even 200, right on the line of EPI – all of those elastase levels would still get the same starting dose of PERT, based on the clinical guidelines for EPI).

It is common and you are not alone if you’ve not been giving the starting dose of PERT that the guidelines recommend.

There are numerous studies showing most people with EPI are initially underdosed/underprescribed PERT. For example, in 2020 Forsmark et al reported that only 8.5% of people with chronic pancreatitis and EPI received an adequate prescription for PERT: and only 5.5% of people with pancreatic cancer and EPI received an adequate prescription dose of PERT. Other studies in chronic pancreatitis and EPI from 2014, 2016, and 2020 report that undertreatment often occurs in EPI and CP; and I’ve found studies in other conditions as well showing undertreatment compared to guidelines, although it’s most studied in CP and cancer (which is true of all types of EPI-related research, despite the prevalence in many other conditions like diabetes, celiac, etc.).

You may need to advocate for yourself, but know that you’re not alone. Again, feel free to comment or email privately (Dana@OpenAPS.org) if you need help finding research for another co-condition and EPI that I haven’t mentioned here.

PS – if you haven’t seen it, I have other posts about EPI at DIYPS.org/EPI

How I Built An AI Meal Estimation App – AI Meal Estimates in “PERT Pilot” and Announcing A New App “Carb Pilot”

As I have been working on adding additional features to PERT Pilot, the app I built (now available on the App Store for iOS!) for people like me who are living with exocrine pancreatic insufficiency, I’ve been thinking about all the things that have been challenging with managing pancreatic enzyme replacement therapy (PERT). One of those things was estimating the macronutrients – meaning grams of fat and protein and carb – in what I was eating.

I have 20+ years practice on estimating carbs, but when I was diagnosed with EPI, estimating fat and protein was challenging! I figured out methods that worked for me, but part of my PERT Pilot work has included re-thinking some of my assumptions about what is “fine” and what would be a lot better if I could improve things. And honestly, food estimation is still one of those things I wanted to improve! Not so much the accuracy (for me, after a year+ of practice I feel as though I have the hang of it), but the BURDEN of work it takes to develop those estimates. It’s a lot of work and part of the reason it feels hard to titrate PERT every single time I want to eat something.

So I thought to myself, wouldn’t it be nice if we could use AI tools to get back quick estimates of fat, protein, and carbs automatically in the app? Then we could edit them or otherwise use those estimates.

And so after getting the initial version of PERT Pilot approved and in the App Store for users to start using, I submitted another update – this time with meal estimation! It’s now been live for over a week.

Here’s how it works:

  • Give your meal a short title (which is not used by the AI but is used at a glance by us humans to see the meal in your list of saved meals).
  • Write a simple description of what you’re planning to eat. It can be short (e.g. “hot dogs”) or with a bit more detail (e.g. “two hot dogs with gluten free buns and lots of shredded cheddar cheese”). A little more detail will get you a somewhat more accurate estimates.
  • Hit submit, and then review the generated list of estimated counts. You can edit them if you think they’re not quite right, and then save them.

Here’s a preview of the feature as a video. I also asked friends for examples of what they’d serve if they had friends or family coming over to dinner – check out the meal descriptions and the counts the app generated for them. (This is exactly how I have been using the app when traveling and eating takeout or eating at someone’s house.)

Showing screenshots of PERT Pilot with the meal description input and the output of the estimated macronutrient counts for grams of fat, protein, and carb Showing more screenshots of PERT Pilot with the meal description input and the output of the estimated macronutrient counts for grams of fat, protein, and carb Showing even more screenshots of PERT Pilot with the meal description input and the output of the estimated macronutrient counts for grams of fat, protein, and carb

The original intent of this was to aid people with EPI (PEI/PI) in estimating what they’re eating so they can better match the needed enzyme dosing to it. But I realized…there’s probably a lot of other people who might like a meal estimation app, too. Particularly those of us who are using carb counts to dose insulin several times a day!

I pulled the AI meal estimation idea out into a second, separate app called Carb Pilot, which is also now available on the App Store.

Carb Pilot is designed to make carb counting easier and to save a bunch of clicks for getting an estimate for what you’re eating.

The Carb Pilot logo, which has pieces of fruit on the letters of the word "Carb". Pilot is written in italic script in purple font.

What does Carb Pilot do?

  • Like PERT Pilot, Carb Pilot has the AI meal estimation feature. You can click the button, type your meal description (and a meal title) and get back AI-generated estimates.
  • You can also use voice entry and quickly, verbally describe your meal.
  • You can also enter/save a meal manually, if you know what the counts are, or want to make your own estimates.

Carb Pilot integrates with HealthKit, so if you want, you can enable that and save any/all of your macronutrients there. HealthKit is a great tool for then porting your data to other apps where you might want to see this data along with, say, your favorite diabetes app that contains CGM/glucose data (or for any other reason/combination).

Speaking of “any/all”, Carb Pilot is designed to be different from other food tracking apps.

As a person with diabetes, historically I *just* wanted carb counts. I didn’t want to have to sift through a zillion other numbers when I just needed ONE piece of information. If that’s true for you – whether it’s carbs, protein, calories, or fat – during onboarding you can choose which of these macronutrients you want to display.

Just want to see carbs? That’s the default, and then in the saved meals you’ll ONLY see the carb info! If you change your mind, you can always change this in the Settings menu, and then the additional macronutrients will be displayed again.

Carb Pilot enables you to toggle the display of different nutrients. This shows what it looks like if only carbs are displaying or what happens if you ask the app to display all nutrients for each recorded food item.

It’s been really fun to build out Carb Pilot. Scott has been my tester for it, and interestingly, he’s turned into a super user of Carb Pilot because, in his words, “it’s so easy to use” and to generate macronutrient estimates for what he’s eating. (His use case isn’t for dosing medicine but matching what he’s eating against his energy expenditure for how much exercise/activity he’s been doing.) He’s been using it and giving me feedback and feature requests – I ended up building the voice-entry feature much more quickly than I expected because he was very interested in using it, which has been great! He also requested the ability to display meals in reverse chronological order and to be able to copy a previous meal to repeat it on another day (swipe on a meal and you can copy the description if you want to tweak and use it again, or simply repeat the meal as-is). We also discovered that it supports multiple languages as input for the AI meal estimation feature. How? Well, we were eating outside at a restaurant in Sweden and Scott copied and pasted the entree description from the menu – in Swedish – into Carb Pilot. It returned the counts for the meal, exactly as if he had entered them in English (our default language)!

I’m pointing this out because if you give Carb Pilot a try and have an idea for a feature/wish you could change the app in some way, I would LOVE for you to email me and tell me about it. I have a few other improvements I’m already planning to add but I’d love to make this as useful to as many people who would find this type of app helpful.

Why (was) there a subscription for ongoing AI use?

For both PERT Pilot and Carb Pilot, there is a cost (expense) to using the AI meal estimation. I have to pay OpenAI (which hosts the AI I’m using for the app) to use the AI for each meal estimation, and I have to host a web server to communicate between the app and the AI, which also costs a bit for every time we send a meal estimation request from the app. That’s why I decided to make Carb Pilot free to download and try. I originally played with $1.99 a month for unlimited AI meal estimations, but temporarily have turned that off to see what that does to the server load and cost, so right now it’s free to use the AI features as well.

TLDR:

– PERT Pilot has been updated to include the new meal estimation feature!

– People without EPI can use Carb Pilot for carb, protein, fat, and/or calorie tracking (of just one or any selection of those) tracking, also using the new AI meal estimation features!

You can find PERT Pilot here or Carb Pilot here on the App Store.

PERT Pilot – the first iOS app for Exocrine Pancreatic Insufficiency (EPI or PEI) and Pancreatic Enzyme Replacement Therapy (PERT)

Introducing PERT Pilot, the first iOS app designed for people with exocrine pancreatic insufficiency (EPI / PEI) and the only iOS app for specifically recording pancreatic enzyme replacement therapy (PERT) dosing!

*Available to download for FREE on the iOS App Store *
The PERT Pilot logo - PERT is in all caps and bold purple font, the word "Pilot" is in a script font in black placed below PERT.

After originally developing GI symptoms, then working through the long journey to diagnosis with exocrine pancreatic insufficiency (known as EPI or PEI), I’ve had to come up methods to figure out the right dosing of PERT for my EPI. I realized that the methods that I’ve made work for me – logging what I was eating in a spreadsheet and using it to determine the ratios I needed to use to dose my pancreatic enzyme replacement therapy (PERT) – weren’t methods that other people were as comfortable using. I have been thinking about this for the last year or more, and in my pursuit for wanting to encourage others to improve their outcomes with EPI (and realize that it IS possible to get to few symptoms, based on increasing/titrating the enzymes we take based on what we eat), I wrote a very long blog post explaining these methods and also sharing a free web-based calculator to help others to calculate their ratios.

But, that still isn’t the most user-friendly way to enable people to do this.

What else could I do, though? I wasn’t sure.

More recently, though, I have been experimenting with various projects and using ‘large language model’ (LLM) tools like GPT-4 to work on various projects. And a few weeks ago I realized that maybe I could *try* to build an iOS app version of my idea. I wanted something to help people log what they are eating, record their PERT dosing, and more easily see the relationship in what they are eating and what enzymes they are dosing. This would enable them to use that information to more easily adjust what they are dosing for future meals if they’re not (yet) satisfied with their outcomes.

And thus, PERT Pilot was born!

Screenshots from the PERT Pilot app which show the home screen, the calculator where you enter what PERT you're taking and a typical meal, plus the resulting ratios screen that show you the relationship between what you ate and how many enzymes you dosed.

What does PERT Pilot do?

PERT Pilot is designed to help people living with Exocrine Pancreatic Insufficiency (EPI or PEI) more easily deal with pancreatic enzyme replacement therapy (PERT). Aka, “taking enzymes”.

The PERT Pilot calculator enables you log the PERT that you are taking along with a meal, how many pills you take for it, and whether this dosing seems to work for you or not.

PERT Pilot then shows you the relationship between how much PERT you have been taking and what you are eating, supporting you as you fine-tune your enzyme intake.

PERT Pilot also enables you to share what’s working – and what might not be working – with your healthcare provider. PERT Pilot not only lists every meal you’ve entered, but also has a visual graph so you can see each meal and how much fat and protein from each meal were dosed by one pill – and it’s color coded by the outcome you assigned that meal! Green means you said that meal’s dosing “worked”; orange means you were “unsure”, and red matches the meals you said “didn’t work” for that level of dosing.

You can press on any meal and edit it, and you can swipe to delete a meal.

PERT Pilot also has is an education section so you can learn more about EPI and why you need PERT, and how this approach to ratios may help you more effectively dose your PERT in the future.

Why use PERT Pilot if you have EPI or PEI or PI?

PERT Pilot is the first and only specific app for those of us living with EPI (PEI or PI). People who use the approach in PERT Pilot of adapting their PERT dosing to what they are eating for each meal or snack often report fewer symptoms. PERT Pilot was designed and built by someone with exocrine pancreatic insufficiency, just like you!

With PERT Pilot you can:

  • Log your meals and PERT dosing. No other app specifically is designed for PERT dosing.
  • Edit or adjust your meal entry at any time – including if you wake up the next morning and realize your last dose from the day before ‘didn’t work’.
  • Review your dosing and see all of your meals, dosing, and outcomes – including a visual graph that shows you, for each meal, what one pill ‘covered’ so you can see where there are clusters of dosing that worked and if there are any clear patterns in what didn’t work for you.
  • You can also export your data, as a PDF list of all meals or a CSV file (which you can open in tools like Excel or other spreadsheet tools) if you want to analyze your data elsewhere!
  • Your data is your data, period. No one has access to your dosing data, meal data, or outcome data, and nothing you enter into PERT Pilot leaves your device – unless you decide to export your data. (See more in the PERT Pilot Privacy Policy.)

Note: this app was not funded by nor has any relationship to any pharmaceutical or medical-related companies. It’s simply built by a person with EPI for other people with EPI.

Here is a quick demonstration of PERT Pilot in action:

An animated gif of PERT Pilot in action

You can share your feedback about PERT Pilot:

Feel free to email me (Dana+PERTPilot@OpenAPS.org) any time.

I’d love to hear what works or is helpful, but also if something in the app isn’t yet working as expected.

Or, if you use another approved brand of PERT that’s not currently listed, let me know and I can add it in.

And, you can share your feature requests! I’m planning to build more features soon (see below).

What’s coming next for PERT Pilot:

I’m not done improving the functionality! I plan to add an AI meal estimation feature (UPDATE: now available!), so if you don’t know what’s in what you’re eating at a restaurant or someone else’s home cooked meal you can simply enter a description of the meal and have macronutrient estimates generated for you to use or modify.

Download PERT Pilot today! It’s free to download, so go ahead and download it and check it out! If you find it useful, please also leave a rating or review on the App Store to help other people find it in the future. You can also share it via social media, and give people a link to download it: https://bit.ly/PERT-Pilot-iOS

A Crouton In Your Salad (Or COVID In The Air)

Look, I get it: you don’t care about a crouton in your salad.

If you don’t like croutons, you simply pick them out of your salad and nudge them to the side of your plate. No harm done.

But for me, a crouton in my salad IS harm done. Even if I were (or the restaurant were) to pick off the croutons, the harm is done. There are specks and crumbs of gluten remaining in my food, and since I have celiac disease, my body is going to overreact to microscopic flecks of gluten and cause damage to my intestines and actively block absorbing the nutrients in the other food that I’m eating.

You might scoff at this concept, but one of the reasons celiac is so risky is because there are both the short term effects (days of abdominal pain, for example) and the long-term risk of causing holes in my intestine and drastically increasing the risk of stomach cancer, if I were to continue consuming gluten.

Some people with celiac aren’t symptomatic, meaning, they could eat the specks (or heck, chunks) of gluten and not feel what I feel.

When I eat specks of gluten? Bad news bears. Literally. It feels like bears clawing at my insides for hours, then days of abdominal soreness, headaches, and feeling unwell. That’s from a SPECK of gluten. I have a strong symptomatic response, so that makes it easier – perhaps – for me than for those with celiac without symptomatic response to choose to be very, very careful and avoiding cross-contamination in my food, and lower my long-term risk of things like stomach cancer that is linked to celiac long-term.

But knowing what I know about how my brain works and the rest of what I’m dealing with, I can imagine the alternative that if I was asymptomatic but lucky enough to discover that I did have celiac disease (through routine screening), I would probably still go to 99% of the same lengths that I do now to avoid gluten and cross-contamination of gluten, because of the long-term risks being so high.

I also don’t have celiac in a silo. I also have type 1 diabetes, which raises my risk of other things…and now I also have exocrine pancreatic insufficiency (EPI) which means every meal I am fighting to supply the right amount of enzymes to successfully digest my food, too. Oh, and now I also have Graves’ disease, so while my thyroid levels are nicely in range and always have been, I’m fighting battles with invisible ghosts in my body (thyroid-related antibodies) that are causing intermittent swelling of my eyelids and messing with my heart rate to tell me that there’s something going on in my body that I have no direct control over.

My plate is already full. (Or my dance card is already full, if you prefer that analogy). I don’t want, and can’t mentally envision right now, handling another thing. I work really hard every day to keep myself in good health. That involves managing my glucose levels and insulin delivery (for Type 1 diabetes), taking my thyroid-related medication that might be helping bring my antibody levels down and monitoring for symptoms to better provided feedback to the 6-week loop of data I get from blood testing to decide how we should be treating my Graves’, to thinking about EVERY SINGLE THING I put in my mouth so that I can take the right amount of enzymes for it, to making sure EVERY SINGLE THING I put in my mouth is gluten-free and is safe from cross-contamination.

Every meal. Every snack. Every drink. Every day.

Probably for the rest of my life: I can’t stop thinking about or doing those things.

Perhaps, then, if you could imagine being in this situation (and I’m so glad most of you are not!), you can imagine that I work really hard to make things easier and better for myself. Both with the plate that I’ve been given, but also in doing my best to lower the risk of more things being added to my already over-loaded plate.

(Preface for this next section: this is about ME not about YOU.)

COVID is one such example. I have worked very hard to avoid COVID, and I am still working very hard to avoid COVID. Like celiac and EPI, if I were to get COVID or other viral illnesses (like the flu), there is the risk of feeling very bad for a short period of time (e.g. 5-7 days). (I’m vaccinated, so the risk of short-term illness being severe (e.g. hospitalization, death) is lowered, and is probably at the same risk as being hospitalized for flu. Even when vaccinated for flu, I’ve been sick enough to almost be hospitalized, which is also why I don’t discount this risk, albeit recognizing it is lower with vaccination).

But like celiac and EPI, if I were to get COVID etc, that increases health risks for the long-term. This is true of most viral illnesses. And when you have an autoimmune condition which indicates your body is a super-star at overreacting to things (which causes other autoimmune conditions), you can imagine that poking the bear is going to make the bear (over)react, whether it is in the short-term or long-term.

It’s not so much if, but when, I would get handed my FIFTH chronic condition if I do get COVID. I went from two (type 1 diabetes and celiac) to four (adding EPI and Graves’) within the course of the same year. This is without having COVID. Given the data showing the increased risk in the long-term of developing many other conditions following COVID, even in people who don’t have superstar overreactive immune systems, it is easy to draw a dotted line to predict the future post-COVID infection to imagine it is not if, but when, my fifth thing would develop and get added to my plate.

So this is why I choose to do things differently than perhaps you do. I mask in indoor spaces. I am currently still choosing to avoid indoor dining. I don’t mind if you choose to do differently; I similarly don’t begrudge you eating croutons. But just like I wouldn’t expect you to pelt me with croutons and yell at me for not eating croutons when you can, I also prefer people not to propel possibly-infectious air at me at short-range when I am unmasked, which is why I prefer to be masked in indoor public spaces. The air is lava (or crouton dust) to me in terms of COVID.

Again, the point here is not to convince you to act any differently than you are acting. You do you! Eat your croutons, do what you like in regard to breathing the air however you like.

But like most folks are 100% fantastic about respecting that I’m not going to eat flecks of croutons, I wish folks would be more understanding of all the background situations behind my (and others’) choices regarding masking or avoiding indoor dining. What I do is not hurting someone else, whether it is not eating croutons or choosing to be masked in an indoor space.

Why would someone want to force me to eat a crouton, knowing it would cause immense harm in the short-term and contribute to long-term damage to my body and increase the risk of life-ending harm?

This is the direction in which I wish we could shift thinking about individual behaviors. Me wearing a mask is like me not eating croutons. Also, I don’t usually ask people to not eat croutons, but many of my friends and family will be happy to agree to eat at a 100% gluten free place if that’s the best option, because it doesn’t harm them not to eat gluten on occasion. Sometimes we do eat at a place that serves gluten, and they eat their croutons without thinking about it. I’m fine with that, too, as long as I am not asked or put at risk of having my mouth be stuffed with crouton dust. That’s how, maybe, I wish people would think about masking. Even if you don’t typically wear masks because you don’t feel you need to, you might choose to occasionally mask indoors when you’re around others who are masking to protect themselves. Like eating at a gluten free restaurant with your friends on occasion, it probably won’t be a big deal for you. You get plenty of gluten at other times. Then you can go back to eating your usual dietary choices (croutons all day, not masking).

COVID is interesting because it is something that potentially impacts all of us, which is why I think maybe the dynamics are changed. Someone might say “oh sure, I wouldn’t throw croutons at you or yell at you for choosing not to eat gluten”. But some people might also think they have the right to judge me regarding my choices around showing up somewhere masked, because they are ‘in the same situation’ and are choosing differently than I.

But my point is: this is not the same situation, the risks to me are not the same, which is why I may choose differently.

TLDR – I guess the point is, what looks like the ‘same’ situation on the outside is not the same for everyone; these differences influence our individual choices and needs; and I wish this is the way more people saw things.

A Crouton In Your Salad (or COVID in the air) by Dana M. Lewis on DIYPS.org

How I Use LLMs like ChatGPT And Tips For Getting Started

You’ve probably heard about new AI (artificial intelligence) tools like ChatGPT, Bard, Midjourney, DALL-E and others. But, what are they good for?

Last fall I started experimenting with them. I looked at AI art tools and found them to be challenging, at the time, for one of my purposes, which was creating characters and illustrating a storyline with consistent characters for some of my children’s books. I also tested GPT-3 (meaning version 3.0 of GPT). It wasn’t that great, to be honest. But later, GPT-3.5 was released, along with the ChatGPT chat interface to it, which WAS a big improvement for a lot of my use cases. (And now, GPT-4 is out and is an even bigger improvement, although it costs more to use. More on the cost differences below)

So what am I using these AI tools for? And how might YOU use some of these AI tools? And what are the limitations? This is what I’ve learned:

  1. The most frequent way I use these AI tools is for getting started on a project, especially those related to writing.

You know the feeling of staring at a blank page and not knowing where to start? Maybe it’s the blank page of a cold email; the blank page of an essay or paper you need to write; the blank page of the outline for a presentation. Starting is hard!

Even for this blog post, I had a list of bulleted notes of things I wanted to remember to include. But I wasn’t sure how I wanted to start the blog post or incorporate them. I stuck the notes in ChatGPT and asked it to expand the notes.

What did it do? It wrote a few paragraph summary. Which isn’t what I wanted, so I asked it again to use the notes and this time “expand each bullet into a few sentences, rather than summarizing”. With these clear directions, it did, and I was able to look at this content and decide what I wanted to edit, include, or remove.

Sometimes I’m stuck on a particular writing task, and I use ChatGPT to break it down. In addition to kick-starting any type of writing overall, I’ve asked it to:

  • Take an outline of notes and summarize them into an introduction; limitations section; discussion section; conclusion; one paragraph summary; etc.
  • Take a bullet point list of notes and write full, complete sentences.
  • Take a long list of notes I’ve written about data I’ve extracted from a systematic review I was working on, and ask it about recurring themes or outlier concepts. Especially when I had 20 pages (!) of hand-written notes in bullets with some loose organization by section, I could feed in chunks of content and get help getting the big picture from that 20 pages of content I had created. It can highlight themes in the data based on the written narratives around the data.

A lot of times, the best thing it does is it prompts my brain to say “that’s not correct! It should be talking about…” and I’m able to more easily write the content that was in the back of my brain all along. I probably use 5% of what it’s written, and more frequently use it as a springboard for my writing. That might be unique to how I’m using it, though, and other simple use cases such as writing an email to someone or other simplistic content tasks may mean you can keep 90% or more of the content to use.

2. It can also help analyze data (caution alert!) if you understand how the tools work.

Huge learning moment here: these tools are called LLMs (large language models). They are trained on large amounts of language. They’re essentially designed so that, based on all of those words (language) it’s taken in previously, to predict content that “sounds” like what would come after a given prompt. So if you ask it to write a song or a haiku, it “knows” what a song or a haiku “looks” like, and can generate words to match those patterns.

It’s essentially a PATTERN MATCHER on WORDS. Yeah, I’m yelling in all caps here because this is the biggest confusion I see. ChatGPT or most of these LLMs don’t have access to the internet; they’re not looking up in a search engine for an answer. If you ask it a question about a person, it’s going to give you an answer (because it knows what this type of answer “sounds” like), but depending on the amount of information it “remembers”, some may be accurate and some may be 100% made up.

Why am I explaining this? Remember the above section where I highlighted how it can start to sense themes in the data? It’s not answering solely based on the raw data; it’s not doing analysis of the data, but mostly of the words surrounding the data. For example, you can paste in data (from a spreadsheet) and ask it questions. I did that once, pasting in some data from a pivot table and asking it the same question I had asked myself in analyzing the data. It gave me the same sense of the data that I had based on my own analysis, then pointed out it was only qualitative analysis and that I should also do quantitative statistical analysis. So I asked it if it could do quantitative statistical analysis. It said yes, it could, and spit out some numbers and described the methods of quantitative statistical analysis.

But here’s the thing: those numbers were completely made up!

It can’t actually use (in its current design) the methods it was describing verbally, and instead made up numbers that ‘sounded’ right.

So I asked it to describe how to do that statistical method in Google Sheets. It provided the formula and instructions; I did that analysis myself; and confirmed that the numbers it had given me were 100% made up.

The takeaway here is: it outright said it could do a thing (quantitative statistical analysis) that it can’t do. It’s like a human in some regards: some humans will lie or fudge and make stuff up when you talk to them. It’s helpful to be aware and query whether someone has relevant expertise, what their motivations are, etc. in determining whether or not to use their advice/input on something. The same should go for these AI tools! Knowing this is an LLM and it’s going to pattern match on language helps you pinpoint when it’s going to be prone to making stuff up. Humans are especially likely to make something up that sounds plausible in situations where they’re “expected” to know the answer. LLMs are in that situation all the time: sometimes they actually do know an answer, sometimes they have a good guess, and sometimes they’re just pattern matching and coming up with something that sounds plausible.

In short:

  • LLM’s can expand general concepts and write language about what is generally well known based on its training data.
  • Try to ask it a particular fact, though, and it’s probably going to make stuff up, whether that’s about a person or a concept – you need to fact check it elsewhere.
  • It can’t do math!

But what it can do is teach you or show you how to do the math, the coding, or whatever thing you wish it would do for you. And this gets into one of my favorite use cases for it.

3. You can get an LLM to teach you how to use new tools, solve problems, and lower the barrier to entry (and friction) on using new tools, languages, and software.

One of the first things I did was ask ChatGPT to help me write a script. In fact, that’s what I did to expedite the process of finding tweets where I had used an image in order to get a screenshot to embed on my blog, rather than embedding the tweet.

It’s now so easy to generate code for scripts, regardless of which language you have previous experience with. I used to write all of my code as bash scripts, because that’s the format I was most familiar with. But ChatGPT likes to do things as Python scripts, so I asked it simple questions like “how do I call a python script from the command line” after I asked it to write a script and it generated a python script. Sure, you could search in a search engine or Stack Overflow for similar questions and get the same information. But one nice thing is that if you have it generate a script and then ask it step by step how to run a script, it gives you step by step instructions in context of what you were doing. So instead of saying “to run a script, type `python script.py’”, using placeholder names, it’ll say “to run the script, use ‘python actual-name-of-the-script-it-built-you.py’ “ and you can click the button to copy that, paste it in, and hit enter. It saves a lot of time for figuring out how to take placeholder information (which you would get from a traditional search engine result or Stack Overflow, where people are fond of things like saying FOOBAR and you have no idea if that means something or is meant to be a placeholder). Careful observers will notice that the latest scripts I’ve added to my Open Humans Data Tools repository (which is packed with a bunch of scripts to help work with big datasets!) are now in Python rather than bash; such as when I was adding new scripts for fellow researchers looking to check for updates in big datasets (such as the OpenAPS Data Commons). This is because I used GPT to help with those scripts!

It’s really easy now to go from an idea to a script. If you’re able to describe it logically, you can ask it to write a script, tell you how to run it, and help you debug it. Sometimes you can start by asking it a question, such as “Is it possible to do Y?” and it describes a method. You need to test the method or check for it elsewhere, but things like uploading a list of DOIs to Mendeley to save me hundreds of clicks? I didn’t realize Mendeley had an API or that I could write a script that would do that! ChatGPT helped me write the script, figure out how to create a developer account and app access information for Mendeley, and debug along the way so I ended up within an hour and a half of having a tool that easily saved me 3 hours on the very first project that I used it with.

I’m gushing about this because there’s probably a lot of ideas you have that you immediately throw out as being too hard, or you don’t know how to do it. It takes time, but I’m learning to remember to think “I should ask the LLM this” and ask it questions such as:

  • Is it possible to do X?
  • Write a script to do X.
  • I have X data. Pretend I am someone who doesn’t know how to use Y software and explain how I should do Z.

Another thing I’ve done frequently is ask it to help me quickly write a complex formula to use in a spreadsheet. Such as “write a formula that can be used in Google Sheets to take an average of the values in M3:M84 if they are greater than zero”.

It gives me the formula, and also describes it, and in some cases, gives alternative options.

Other things I’ve done with spreadsheets include:

  • Ask it to write a conditional formatting custom formula, then give me instructions for expanding the conditional formatting to apply to a certain cell range.
  • Asking it to check if a cell is filled with a particular value and then repeating the value in the new cell, in order to create new data series to use in particular charts and graphs I wanted to create from my data.
  • Help me transform my data so I could generate a box and whisker plot.
  • Ask it for other visuals that might be effective ways to illustrate and visualize the same dataset.
  • Explain the difference between two similar formulas (e.g. COUNT and COUNTA or when to use IF and IFS).

This has been incredibly helpful especially with some of my self-tracked datasets (particularly around thyroid-related symptom data) where I’m still trying to figure out the relationship between thyroid levels, thyroid antibody levels, and symptom data (and things like menstrual cycle timing). I’ve used it for creating the formulas and solutions I’ve talked about in projects such as the one where I created a “today” line that dynamically updates in a chart.

It’s also helped me get past the friction of setting up new tools. Case in point, Jupyter notebooks. I’ve used them in the web browser version before, but often had issues running the notebooks people gave me. I debugged and did all kinds of troubleshooting, but have not for years been able to get it successfully installed locally on (multiple of) my computers. I had finally given up on effectively using notebooks and definitely given up on running it locally on my machine.

However, I decided to see if I could get ChatGPT to coax me through the install process.

I told it:

“I have this table with data. Pretend I am someone who has never used R before. Tell me, step by step, how to use a Jupyter notebook to generate a box and whisker plot using this data”

(and I pasted my data that I had copied from a spreadsheet, then hit enter).

It outlined exactly what I needed to do, saying to install Jupyter Notebook locally if I hadn’t, gave me code to do that, installing the R kernel, told me how to do that, then how to start a notebook all the way down to what code to put in the notebook, the data transformed that I could copy/paste, and all the code that generated the plot.

However, remember I have never been able to successfully get Jupyter Notebooks running! For years! I was stuck on step 2, installing R. I said:

“Step 2, explain to me how I enter those commands in R? Do I do this in Terminal?”

It said “Oh apologies, no, you run those commands elsewhere, preferably in Rstudio. Here is how to download RStudio and run the commands”.

So, like humans often do, it glossed over a crucial step. But it went back and explained it to me and kept giving more detailed instructions and helping me debug various errors. After 5-6 more troubleshooting steps, it worked! And I was able to open Jupyter Notebooks locally and get it working!

All along, most of the tutorials I had been reading had skipped or glossed over that I needed to do something with R, and where that was. Probably because most people writing the tutorials are already data scientists who have worked with R and RStudio etc, so they didn’t know those dependencies were baked in! Using ChatGPT helped me be able to put in every error message or every place I got stuck, and it coached me through each spot (with no judgment or impatience). It was great!

I was then able to continue with the other steps of getting my data transformed, into the notebook, running the code, and generating my first ever box and whisker plot with R!

A box and whisker plot, illustrated simply to show that I used R and Jupyter finally successfully!

This is where I really saw the power of these tools, reducing the friction of trying something new (a tool, a piece of software, a new method, a new language, etc.) and helping you troubleshoot patiently step by step.

Does it sometimes skip steps or give you solutions that don’t work? Yes. But it’s still a LOT faster than manually debugging, trying to find someone to help, or spending hours in a search engine or Stack Overflow trying to translate generic code/advice/solutions into something that works on your setup. The beauty of these tools is you can simply paste in the error message and it goes “oh, sorry, try this to solve that error”.

Because the barrier to entry is so low (compared to before), I’ve also asked it to help me with other project ideas where I previously didn’t want to spend the time needed to learn new software and languages and all the nuances of getting from start to end of a project.

Such as, building an iOS app by myself.

I have a ton of projects where I want to temporarily track certain types of data for a short period of time. My fall back is usually a spreadsheet on my phone, but it’s not always easy to quickly enter data on a spreadsheet on your phone, even if you set up a template with a drop down menu like I’ve done in the past (for my DIY macronutrient tool, for example). For example, I want to see if there’s a correlation in my blood pressure at different times and patterns of inflammation in my eyelid and heart rate symptoms (which are symptoms, for me, of thyroid antibodies being out of range, due to Graves’ disease). That means I need to track my symptom data, but also now some blood pressure data. I want to be able to put these datasets together easily, which I can, but the hardest part (so to speak) is finding a way that I am willing to record my blood pressure data. I don’t want to use an existing BP tracking app, and I don’t want a connected BP monitor, and I don’t want to use Apple Health. (Yes, I’m picky!)

I decided to ask ChatGPT to help me accomplish this. I told it:

“You’re an AI programming assistant. Help me write a basic iOS app using Swift UI. The goal is a simple blood pressure tracking app. I want the user interface to default to the data entry screen where there should be three boxes to take the systolic, diastolic blood pressure numbers and also the pulse. There should also be selection boxes to indicate whether the BP was taken sitting up or laying down. Also, enable the selection of a section of symptom check boxes that include “HR feeling” and “Eyes”. Once entered on this screen, the data should save to a google spreadsheet.” 

This is a completely custom, DIY, n of 1 app. I don’t care about it working for anyone else, I simply want to be able to enter my blood pressure, pulse, whether I’m sitting or laying down, and the two specific, unique to me symptoms I’m trying to analyze alongside the BP data.

And it helped me build this! It taught me how to set up a new SwiftUI project in XCode, gave me code for the user interface, how to set up an API with Google Sheets, write code to save the data to Sheets, and get the app to run.

(I am still debugging the connection to Google Sheets, so in the interim I changed my mind and had it create another screen to display the stored data then enable it to email me a CSV file, because it’s so easy to write scripts or formulas to take data from two sources and append it together!)

Is it fancy? No. Am I going to try to distribute it? No. It’s meeting a custom need to enable me to collect specific data super easily over a short period of time in a way that my previous tools did not enable.

Here’s a preview of my custom app running in a simulator phone:

Simulator iphone with a basic iOS app that intakes BP, pulse, buttons for indicating whether BP was taken sitting or laying down; and toggles for key symptoms (in my case HR feeling or eyes), and a purple save button.

I did this in a few hours, rather than taking days or weeks. And now, the barrier to entry to creating more custom iOS is reduced, because now I’m more comfortable working with XCode and the file structures and what it takes to build and deploy an app! Sure, again, I could have learned to do this in other ways, but the learning curve is drastically shortened and it takes away most of the ‘getting started’ friction.

That’s the theme across all of these projects:

  • Barriers to entry are lower and it’s easier to get started
  • It’s easier to try things, even if they flop
  • There’s a quicker learning curve on new tools, technologies and languages
  • You get customized support and troubleshooting without having to translate through as many generic placeholders

PS – speaking of iOS apps, based on building this one simple app I had the confidence to try building a really complex, novel app that has never existed in the world before! It’s for people with exocrine pancreatic insufficiency like me who want to log pancreatic enzyme replacement therapy (PERT) dosing and improve their outcomes – check out PERT Pilot and how I built it here.

4. Notes about what these tools cost

I found ChatGPT useful for writing projects in terms of getting started, even though the content wasn’t that great (on GPT-3.5, too). Then they came out with GPT-4 and made a ChatGPT Pro option for $20/month. I didn’t think it was worth it and resisted it. Then I finally decided to try it, because some of the more sophisticated use cases I wanted to use it for required a longer context window, and in addition to a better model it also gave you a longer context window. I paid the first $20 assuming I’d want to cancel it by the end of the month.

Nope.

The $20 has been worth it on every single project that I’ve used it for. I’ve easily saved 5x that on most projects in terms of reducing the energy needed to start a project, whether it was writing or developing code. It has saved 10x that in time cost recouped from debugging new code and tools.

GPT-4 does have caps, though, so even with the $20/month, you can only do 25 messages every 3 hours. I try to be cognizant of which projects I default to using GPT-3.5 on (unlimited) versus saving the more sophisticated projects for my GPT-4 quota.

For example, I saw a new tool someone had built called “AutoResearcher”, downloaded it, and tried to use it. I ran into a bug and pasted the error into GPT-3.5 and got help figuring out where the problem was. Then I decided I wanted to add a feature to output to a text file, and it helped me quickly edit the code to do that, and I PR’ed it back in and it was accepted (woohoo) and now everyone using that tool can use that feature. That was pretty simple and I was able to use GPT-3.5 for that. But sometimes, when I need a larger context window for a more sophisticated or content-heavy project, I start with GPT-4. When I run into the cap, it tells me when my next window opens up (3 hours after I started using it), and I usually have an hour or two until then. I can open a new chat on GPT-3.5 (without the same context) and try to do things there; switch to another project; or come back at the time it says to continue using GPT-4 on that context/setup.

Why the limit? Because it’s a more expensive model. So you have a tradeoff between paying more and having a limit on how much you can use it, because of the cost to the company.

—–

TLDR:

Most important note: LLMs don’t “think” or “know” things the way humans do. They output language they predict you want to see, based on its training and the inputs you give it. It’s like the autocomplete of a sentence in your email, but more words on a wider range of topics!

Also, the LLM can’t do math. But they can write code. Including code to do math.

(Some, but not all, LLMs have access to the internet to look up or incorporate facts; make sure you know which LLM you are using and whether it has this feature or not.)

Ways to get started:

    1. The most frequent way I use these AI tools is for getting started on a project, especially those related to writing.
      • Ask it to help you expand on notes; write summaries of existing content; or write sections of content based on instructions you give it
    2.  It can also help analyze data (caution alert!) if you understand the limitations of the LLM.
      • The most effective way to work with data is to have it tell you how to run things in analytical software, whether that’s how to use R or a spreadsheet or other software for data analysis. Remember the LLM can’t do math, but it can write code so you can then do the math!
    3.  You can get an LLM to teach you how to use new tools, solve problems, and lower the barrier to entry (and friction) on using new tools, languages, and software.
      • Build a new habit of asking it “Can I do X” or “Is it possible to do Y” and when it says it’s possible, give it a try! Tell it to give you step-by-step instructions. Tell it where you get stuck. Give it your error messages or where you get lost and have it coach you through the process. 

What’s been your favorite way to use an LLM? I’d love to know other ways I should be using them, so please drop a comment with your favorite projects/ways of using them!

Personally, the latest project that I built with an LLM has been PERT Pilot!

How I use LLMs (like ChatGPT) and tips for getting started