More Tools To Help Diabetes Researchers and Other Researchers

A few years ago I made a big deal about a tool I had created, converting someone’s web tool into a command line tool to be able to take complex json data and convert it to csv. Years later, I (and thousands of others, it’s been downloaded 1600+ times!) am still using this tool because there’s nothing better that I’ve found when you have data that you don’t know the data structure for or the data structure varies across files.

I ended up creating a repository on Github to store it with details on running it, and have expanded it over the last (almost) six years as I and others have added additional tools. For example, it’s where Arsalan, one of my frequent collaborators, and I store open source code from some of our recent papers.

Recently, I added two more small scripts. This was motivated to help researchers who have been successfully using the OpenAPS Data Commons and want to update their dataset with a later version of the data. Chances are, they have cleaned and worked with a previous version of the dataset, and instead of having to re-clean all of the data all over again, this set of scripts should help narrow down what the “new” data is that needs to be pulled out, cleaned, and appended to a previously cleaned dataset.

You can check out the full tool repository here (it has several other scripts in addition to the ones mentioned above). The latest are two python scripts that checks the content of an existing folder and lists out the memberID and filenames for each. This is useful to run on an existing, already-cleaned dataset to see what you currently have. It can also be run on the latest/newest/bigger dataset available. Then, the second script can be run to compare the memberIDs and file names in the newer/biggest/larger dataset against the previously cleaned/smaller/older dataset. Those that “match” already exist in the version of the dataset they have; they don’t need to be pulled again. The others don’t exist in the current dataset, and can be popped into a script to pull out just those data files to then be cleaned and appended to the existing dataset.

As a heads up specifically for those working with the OpenAPS Data Commons, it is best practice to name/describe the version of the dataset via the size. For example, you might be working with the n=88 or n=122 version of the dataset. If you used the above method, you would then describe it along the lines of taking and cleaning the n=122 version; selecting new files available from the n=183 version and appending them to the n=122 version; and the resulting dataset is n=(122+number of new files used).

Folks who access the n=183 version of the dataset and haven’t previously used a smaller version of the dataset can reference using the n=183 and clarifying how many files they ended up using, e.g. describing that they followed X method to clean the data starting from the n=183 version and their resulting dataset is n=166, for example.

It is important to clarify which version and size of the dataset is being used.

PS – this method works on other data file types, too! You’d change the variable/column header names in the script to update this for other cases.

We Have Changed the Standards of Care for People With Diabetes

We’ve helped change the standard of care for people with diabetes, with open source automated insulin delivery.

I get citation alerts sometimes when my previous research papers or articles are cited. For the last few years, I get notifications when new consensus guidelines or research comes out that reference or include mention of open source automated insulin delivery (AID). At this time of year, the ADA Standards of Care is released for the following year, and I find out usually via these citation alerts.

Why?

This year, in 2023, there’s a section on open source automated insulin delivery!

A screenshot of the 2023 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

But did you know, that’s not really new? Here’s what the 2022 version said:

A screenshot of the 2022 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

And 2021 also included…

A screenshot of the 2021 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

And 2020? Yup, it was there, too.

A screenshot of the 2020 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

All the way back to 2019!

A screenshot of the 2019 ADA Standards of Care under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

If you read them in chronological order, you can see quite a shift.

In 2019, it was a single sentence noting their existence under a sub-heading of “Future Systems” under AID. In 2020, the content graduated to a full paragraph at the end of the AID section (that year just called “sensor-augmented pumps”). In 2021, it was the same paragraph under the AID section heading. 2022 was the year it graduated to having its own heading calling it out, with a specific evidence based recommendation! 2023 is basically the same as 2022.

So what does it say?

It points out patients are using open source AID (which they highlight as do-it-yourself closed loop systems). It sort of incorrectly suggests healthcare professionals can’t prescribe these systems (they can, actually – providers can prescribe all kinds of things that are off-label – there’s just not much point of a “prescription” unless it’s needed for a person’s elementary school (or similar) who has a policy to only support “prescribed” devices).

And then, most importantly, it points out that regardless, healthcare providers should assist in diabetes management and support patient choice to ensure the safety of people with diabetes. YAY!

“…it is crucial to keep people with diabetes safe if they are using these methods for automated insulin delivery. Part of this entails ensuring people have a backup plan in case of pump failure. Additionally, in most DIY systems, insulin doses are adjusted based on the pump settings for basal rates, carbohydrate ratios, correction doses, and insulin activity. Therefore, these settings can be evaluated and modified based on the individual’s insulin requirements.”

You’ll notice they call out having a backup plan in case of pump failure.

Well, yeah.

That should be true of *any* AID system or standalone insulin pump. This highlights that the needs of people using open source AID in terms of healthcare support are not that different from people choosing other types of diabetes therapies and technologies.

It is really meaningful that they are specifically calling out supporting people living with diabetes. Regardless of technology choices, people with diabetes should be supported by their healthcare providers. Full stop. This is highlighted and increasingly emphasized, thanks to the movement of individuals using open source automated insulin delivery. But the benefits of this is not limited to those of us using open source automated insulin delivery; this spills over and expands to people using different types of BG meters, CGM, insulin pumps, insulin pens, syringes, etc.

No matter their choice of tools or technologies, people with diabetes SHOULD be supported in THEIR choices. Not choices limited by healthcare providers, who might only suggest specific tools that they (healthcare providers) have been trained on or are familiar with – but the choices of the patient.

In future years, I expect the ADA Standard of Care for 2024 and beyond to evolve, in respect to the section on open source automated insulin delivery.

The evidence grading should increase from “E” (which stands for “Expert consensus or clinical experience”), because there is now a full randomized control trial in the New England Journal of Medicine on open source automated insulin delivery, in addition to the continuation results (24 weeks following the RCT; 48 full weeks of data) accepted for publication (presented at EASD 2022), and a myriad of other studies ranging from retrospective to prospective trials. The evidence is out there, so I expect that this evidence grading and the text of the recommendation text will evolve accordingly to catch up to the evidence that exists. (The standards of care are based on literature available up to the middle of the previous year; much of the things I’ve cited above came out in later 2022, so it matches the methodology to not be included until the following year; these newest articles should be scooped up by searches up to July 2023 for the 2024 edition.)

In the meantime, I wish more people with diabetes were aware of the Standards of Care and could use them in discussion with providers who may not be as happy with their choices. (That’s part of the reason I wrote this post!)

I also wish we patients didn’t have to be aware of this and don’t have to argue our cases for support of our choices from healthcare providers.

But hopefully over time, this paradigm of supporting patient choice will continue to grow in the culture of healthcare providers and truly become the standard of care for everyone, without any personal advocacy required.

Did you know? We helped change the standards of care for people living with diabetes. By Dana M. Lewis from DIYPS.org

Replacing Embedded Tweets With Images

If you’re like me, you may have been thrilled when (back in the day) it became possible to embed public social media posts such as tweets on websites and blogs. It enabled people who read here to pop over to related Twitter discussions or see images more easily.

However, with how things have been progressing (PS – you can find me @DanaMLewis@med-mastodon.com as well), it’s increasingly possible that a social media account could get suspended/banned/taken down arbitrarily for things that are retrospectively against new policies. It occurred to me that one of the downsides to this is the impact it would have on embedded post content here on my blog, so I started thinking through how I could replace the live embedded links with screenshots of the content.

There’s no automatic way to do this, but the most efficient method that I’ve decided on has been the following:

1 ) Export an XML file of your blog/site content.

If you use WordPress, there’s an “Export” option under “Tools”. You can export all content, it doesn’t matter.

2 ) Run a script (that I wrote with the help of ChatGPT).

I called my script “embedded-links.sh” and it searches the XML file for URLs found between “[ embed ]” and “[\embed]” and generates a CSV file. Opening the CSV with Excel, I can then see the list of every embedded tweet throughout the site.

I originally was going to have the script pair the embedded links (twitter URLs) to the post it was found within to make it easier to go swap them out with images, but realized I didn’t need this.

(See no. 4 for more on why not and the alternative).

3 ) I created screenshots with the URLs in my file.

I went through and pasted each URL (only about 60, thankfully) into https://htmlcsstoimage.com/examples/twitter-tweet-screenshot’s example HTML code and then clicked “re-generate image” in the top right corner under the image tab. Then, I right-clicked the image and chose “Save As” and saved it to a folder. I made sure to rename the image file as I saved it each time descriptively; this is handy for the next step.

I did hit the free demo limit on that tool after about 30 images, and I had 60, so after about 20 minutes I went back and checked and was able to do my second batch of tweets.

(There are several types of these screenshot generators you could use, this one happened to be quick and easy for my use case.)

4 ) I then opened up my blog and grabbed the first link and pasted it into the search box on the Posts page.

It pulled up the list of blog posts that had that URL.

I opened the blog post, scrolled to the embedded tweet, deleted it, and replaced it with the image instead.

(Remember to write alt text for your image during this step!)

Remember to ‘update’/save your post, too, after you input the image.

It took maybe half an hour to do the final step, and maybe 2-3 hours total including all the time I spent working on the script in number 2, so if you have a similar ~60 or so links I would expect this to take ~1-2 focused hours.

Replacing embedded web content with images by Dana M. Lewis

Dealing With And Avoiding Chronic Disease Management Burnout

I’ve been thinking about juggling lately, especially as this year I’ve had to add a series of new habits and behaviors and medications to manage not one but two new chronic diseases. Getting one new chronic disease is hard; getting another is hard; and the challenges aren’t necessarily linear or exponential, and they’re not necessarily obvious up front.

But sometimes the challenges do compound over time.

In January when I started taking pancreatic enzyme replacement therapy (PERT) for exocrine pancreatic insufficiency (EPI or PEI), I had to teach myself to remember to take enzymes at every meal. Not just some time around the meal, but 100% every time before (by only a few minutes) or right at the start of the meal. With PERT, the timing matters for efficacy. I have a fast/short feedback loop – if I mis-time my enzymes or don’t take them, I get varying symptoms within a few hours that then bother me for the rest of the day, overnight, and into the next morning. So I’m very incentivized to take the enzymes and time them effectively when I eat. However, as I started to travel (my first trip out of the country since the pandemic started), I was nervous about trying to adapt to travel and being out of my routine at home where I’ve placed enzymes in visible eye sight of every location where I might consume food. Thankfully, that all went well and I managed not to forget taking enzymes when I ate and all was well. But I know I’m still building the habit of taking enzymes and eating, and that involves both always having enzymes with me and remembering to get them out and take them. It sounds like a trivial amount of things to remember, but this is added on top of everything else I’m doing for managing my health and well-being.

This includes other “simple” things like taking my allergy medications – because I’m allergic to cats (and we have them!), trees, dust, etc. And vitamins (I’m vitamin D deficient when I don’t take vitamin D).

And brushing my teeth and flossing.

You do that too, right? Or maybe you’re one of those people who struggle to remember to floss. It’s normal.

The list of well-being management gets kind of long when you think about all the every day activities and habits you have to help you stay at your best possible health.

Eat healthy! (You do that, right? 😉 )

Hydrate!

Exercise!

Etc.

I’ve also got the background habits of 20 years of living with diabetes: keeping my pump sites on my body; refilling the reservoir and changing the pump site every few days; making sure the insulin doesn’t get too hot or cold; making sure my CGM data isn’t too noisy; changing my CGM sensor when needed; estimating ballpark carbs and entering them and/or temporary targets to indicate exercise into my open source AID; keeping my AID powered; keeping my pump powered; keeping my phone – which has my CGM visibility on it – powered and nearby. Ordering supplies – batteries and pump sites and reservoirs and CGM transmitters and CGM sensors and insulin and glucagon.

Some of these are daily or every few days tasks; others are once or twice a month or every three months.

Those stack up sometimes where I need to refill a reservoir and oops, get another bottle of insulin out of the fridge which reminds me to make a note to check on my shipment of insulin which hasn’t arrived yet. I also need to change my pump site and my CGM sensor is expiring at bedtime so I need to also go ahead and change it so the CGM warmup period will be done by the time I go to sleep. I want to refill my reservoir and change the pump site after dinner since the dinner insulin is more effective on the existing site; I think of this as I pull my enzymes out to swallow as I start eating. I’ll do the CGM insertion when I do my pump site change. But the CGM warmup period is then in the after-dinner timeframe so I then have to keep an eye on things manually because my AID can’t function without CGM data so 2 hours (or more) of warmup means extra manual diabetes attention. While I’m doing that, I also need to remember to take my allergy medication and vitamin D, plus remembering to take my new thyroid medication at bedtime.

Any given day, that set of overlapping scenarios may be totally fine, and I don’t think anything of them.

On other days, where I might be stressed or overwhelmed by something else – even if it’s not health-related – that can make the above scenario feel overwhelmingly difficult.

One of the strategies I discussed in a previous post relative to planning travel or busy periods like holidays is trying to separate tasks in advance (like pre-filling a reservoir), so the action tasks (inserting a pump site and hooking it up to a new reservoir) don’t take as long. That works well, if you know the busy period is coming.

But sometimes you don’t have awareness of a forthcoming busy period and life happens. Or it’s not necessarily busy, per se, but you start to get overwhelmed and stressed and that leaks over into the necessary care and feeding of medical stuff, like managing pump sites and reservoirs and sensors and medication.

You might start negotiating with yourself: “do I really need to change that pump site today? It can wait until tomorrow”. Or you might wait until your reservoir actually hits the ‘0’ level (which isn’t fully 0; there’s a few units plus or minus some bubbles left) to refill it. Or other things like that, whether it’s not entering carbs into your pump or AID or not bolusing. Depending on your system/setup, those things may not be a big deal. And for a day or two, they’re likely not a big deal overall.

But falling into the rut of these becoming the new normal is not optimal – that’s burnout, and I try to avoid getting there.

When I start to have some of those thought patterns and recognize that I have begun negotiating with myself, I try to voice how I’m feeling to myself and my spouse or family or friends. I tell them I’m starting to feel “crispy” (around the edges) – indicating I’m not fully burnt out, but I could get all the way to burnout if I don’t temporarily change some things. (Or permanently, but often for me temporary shifts are effective.)

One of the first things I do is think through what is the bare minimum necessary care I need to take. I go above and beyond and optimize a LOT of things to get above-target outcomes in most areas. While I like to do those things, they’re not necessary. So I think through the list of necessary things, like: keeping a working pump site on my body; keeping insulin in a reservoir attached to my pump; keeping my CGM sensor working; and keeping my AID powered and nearby.

That then leaves a pile of tasks to consider:

  1. Not doing at all for ___ period of time
  2. Not doing myself but asking someone else to do for ____ period of time

And then I either ask or accept the offers of help I get to do some of those things.

When I was in high school and college, I would have weekends where I would ask my parents to help. They would take on the task of carb counting (or estimating) so I didn’t have to. (They also did HEAPS of work for years while I was on their insurance to order and keep supplies in the house and wrangle with insurance so I didn’t have to – that was huge background help that I greatly appreciated.)

Nowadays, there are still things I can and do get other people to help with. Sometimes it’s listening to me vent (with a clear warning that I’m just venting and don’t need suggestions); my parents often still fill that role for me! Since I’m now married and no longer living alone, Scott offers a lot of support especially during those times. Sometimes he fills reservoirs for me, or more often will bring me supplies from the cabinet or fridge to wherever I’m sitting (or even in bed so I don’t have to get up to go change my site). Or he’ll help evaluate and determine that something can wait until a later time to do (e.g. change pump site at another time). Sometimes I get him to open boxes for me and we re-organize how my supplies are to make them easier to grab and go.

Those are diabetes-specific examples, but I’ve also written about how helpful additional help can be sometimes for EPI too, especially with weighing and estimating macronutrient counts so I can figure out my PERT dosing. Or making food once I’ve decided what I want to eat, again so I can separate deciding what to eat and what the counts/dosing is from the action tasks of preparing or cooking the food.

For celiac, one of the biggest changes that has helped was Scott asking family members to load the “Find Me Gluten Free” app on their phone. That way, if we were going out to eat or finding a takeout option, instead of everyone ALWAYS turning to me and saying “what are the gluten free options?”, they could occasionally also skim the app to see what some of the obvious choices were, so I wasn’t always having to drive the family decision making on where to eat.

If you don’t have a chronic illness (or multiple chronic illnesses), these might not sound like a big deal. If you do (even if you have a different set of chronic disease(s)), maybe you recognize some of this.

There are estimates that people with diabetes make hundreds of decisions and actions a day for managing living with diabetes. Multiply that times 20 years. Ditto for celiac, for identifying and preparing and guarding against cross-contamination of said gluten-free food – multiply that work every day times 14 years. And now a year’s worth of *every* time I consider eating anything to estimate (with reading nutrition labels or calculating combinations based on food labels or weighing and googling and estimating compared to other nutrition labels) how much enzymes to take and remembering to swallow the right number of pills at the optimal times. Plus the moral and financial weight of deciding how to balance efficacy with cost of these enzymes. Plus several months now of an additional life-critical medication.

It’s so much work.

It’s easy to get outright burnt out, and common to start to feel a little “crispy” around the edges at times.

If you find yourself in this position, know that it’s normal.

You’re doing a lot, and you’re doing a great job to keep yourself alive.

You can’t do 110% all the time, though, so it is ok to figure out what is the bare minimum and some days throughout the year, just do that, so you can go back to 110%-ing it (or 100%-ing) the other days.

With practice, you will increasingly be able to spot patterns of scenarios or times of the year when you typically get crispy, and maybe you can eventually figure out strategies to adapt in advance (see me over here pre-filling reservoirs ahead of Thanksgiving last week and planning when I’d change my pump site and planning exactly what I would eat for 3 days).

TLDR:

  • Living with chronic disease is hard. And the more diseases you have, the harder it can be.
  • If you live with or love someone with chronic disease(s), ask them if you can help. If they’re venting, ask if they want you to listen (valuable!) or to let you know if at any point they want help brainstorming or for you to provide suggestions (helpful *if* desired and requested).
  • If you’re the one living with chronic disease(s), consider asking for help, even with small things. Don’t let your own judgment (“I should be able to do this!”) get in your way of asking for help. Try it for a day or for a weekend.
Dealing with and avoiding chronic disease burnout by Dana M. Lewis

New Chapter: Personalizing Research: Involving, Inviting, and Engaging Patient Researchers

TLDR: A new chapter I wrote, invited for a book on Personal Health Informatics, is out! You can read a summary below describing my chapter. You can also find a link to a full pre-print (a copy of my submitted, unedited version) of the article (as well as author copies of all of my articles) on my research page.

In November 2020 I was invited to submit a proposal for a chapter for a pending book on personal health informatics. Like journal articles, you can be invited to submit for a book chapter as part of a larger book topic.

Knowing that book chapters take a long time to come out, I carefully thought about the topic of my article and whether I could write something that would be relevant approximately a year after I wrote it.

The context of the book was:

“high-quality scholarly work that seeks to provide clarity, consistency, and reproducibility, with a shared view of the status-quo of consumer and pervasive health informatics and its relevance to precision medicine and healthcare applications and system design. The book will offer a snapshot of this emerging field, supported by the methodological, practical, and ethical perspectives from researchers and practitioners in the field. In addition to being a research reader, this book will provide pragmatic insights for practitioners in designing, implementing, and evaluating personal health informatics in the healthcare settings.”

They also wanted to include patient perspectives, which is part of the reason I was invited to submit a proposal for a chapter, and asked if I could write about citizen science from the patient perspective.

I decided to write more broadly about patient perspectives in research, and since the audience of this book is likely to be academic researchers and practitioners already in the field, seek to provide some ideas and input as to how they could think about practically inviting and engaging patient partners in research, as well as supporting the burgeoning field of patient researchers who lead their own research.

I submitted my draft article in April 2021; received feedback and submitted the revision in August 2021; and the book was due to be published in “spring 2022”.

::crickets::

The book is now out in November 2022, hooray! It is called Personal Health Informatics and you can find it online here.

Abstract from my chapter:

There are many benefits to engaging and involving patients in traditional, researcher-led research, ranging from improved recruitment and increased enrollment to accelerating and facilitating the implementation of research outcomes. Researchers, however, may not be aware of when and where they can involve patients (people with lived healthcare experience) in research or what the benefits may be of improving patient engagement in the research process or of expanding patient involvement to other research stages. This chapter seeks to highlight the benefits and opportunities of engaging patients in traditional research and provide practical suggestions for inviting or recruiting patients for participation in research, whether or not there is an established patient and public involvement (PPI) program. This includes tips for developing a productive working relationship and culture between researchers and the patients involved in research. There are also many patients themselves conducting research, and often without the benefits, resources, and opportunities made available to traditional researchers. Traditional researchers should identify and recognize researchers who have emerged from non-traditional paths who are driving and engaging in their own research, and provide support and resources where appropriate to foster further patient-driven research. This investment can lead to collaboration opportunities for additional highly relevant and effective research studies with traditional researchers in the future. This chapter provides examples of patient researchers and offers tools to support traditional researchers who want to support patient-led research efforts and improve their ability to successfully engage patient stakeholders in their own research.

Here are some of the highlights and recommendations from my chapter:

  • Invite patients to participate in research, and do it early.
  • Ask patients how they’d like to be involved in research.
  • Relationship building and culture setting is important. Address the power dynamics within your project and team.
  • Set expectations for everyone involved on the team.
  • Consider training and skill-building opportunities for patients who are partnering in research.
  • If you’re looking to support a patient who is already initiating or performing research, first ask: “How can I help?”. This article includes a list of suggestions of how you can help them.

This article also highlights many exceptional researchers who are patients and their work, including:

Note the chapter discusses explicitly how not everyone has a PhD or an MD; this is not a requisite to doing high-quality research!

The chapter concludes with “clinical pearls’’, which are four suggested tips to use in daily practice, and includes some suggested resources like the Opening Pathways Readiness Quiz. It also includes a suggestion of making a “To Don’t” list in collaboration with patient research partners.

The chapter also contains two review questions:

  1. Imagine that you have a research project where you would like to apply for funding, and the funder mandates that you have a patient involved in your research project. At what stage do you involve a patient in your project, and how do you do so?
  2. You are at a scientific conference and observe a patient giving a presentation about their own research or project. They’re not a traditional researcher – they don’t have a PhD or have a day job as a researcher. You want to approach them and offer your help with their research. What do you offer when you approach them?

To see the answers to these review questions, check out the article in full! :)

TLDR: A new chapter I wrote, invited for a book on Personal Health Informatics, is out! You can find a link to a full pre-print (a copy of my submitted, unedited version) of the article (as well as author copies of all of my articles) on my research page.

If you’d like to cite this in one of your articles, note that the DOI for the article is https://doi.org/10.1007/978-3-031-07696-1_17 and an example citation is:

Lewis, D. (2022). Personalizing Research: Involving, Inviting, and Engaging Patient Researchers. In: Hsueh, PY.S., Wetter, T., Zhu, X. (eds) Personal Health Informatics. Cognitive Informatics in Biomedicine and Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-031-07696-1_17

Excerpted tips from the book chapter "Personalizing Research: Involving, Inviting, and Engaging Patient Researchers" by Dana Lewis

Modifying Thanksgiving and Other Holiday Meals With Exocrine Pancreatic Insufficiency (and Celiac)

In the last few years, I’ve had the opportunity (or challenge) of re-thinking how I do holiday food traditions. For the last 13+ years I’ve figured out how to do everything gluten free (because I have celiac). I had that figured out pretty well. But more recently, when I was eliminating onion and garlic and trying low FODMAP last year, it was a lot harder. Instead of modifying what I usually did, I essentially started from a blank page in figuring out what I *could* eat and then what I wanted to eat.

Thankfully, this year I have many more options. Since I realized it was exocrine pancreatic insufficiency (EPI) that was causing my GI issues, I am back to being able to eat whatever (gluten free) that I want. It’s a lot easier. But it’s still different this year than years prior, because I need to generally estimate how many grams of fat and protein in what I am eating in order to determine how much pancreatic enzyme replacement therapy (PERT) that I need to take to “cover” the meal so I can digest it.

Usually at Thanksgiving, we do a family-style meal. (With a group of family that is COVID-boosted and everyone does a rapid test before they come.) We all help make food and set it out on a table, and people pass it around and serve themselves. In the past, I’ve had a few gluten free specific dishes that just sat in front of my plate, and I served from those and took other naturally GF options (like sweet potatoes, green beans, etc) as they were passed around.

This year, I wasn’t sure how I wanted to handle it. I’m still not great at guesstimating the amount of fat and protein in food the way I am with carb estimates (for which I have 20 years of practice!). I knew I would want to weigh some of the food to help estimate it (turkey, stuffing, etc that are likely to be higher fat and/or protein quantities) whereas others like sweet potatoes were something I generally have estimated well.

But would I bring my scale to the table and pick up my plate and weigh it with each portion I served? That seemed like it might draw attention to me and generally reduce the joy of the meal for me. I could fill my plate then go back to the kitchen with it and weigh it; but that also felt like it would steal some of my joy from the experience of sitting down and eating with everybody.

Instead, I decided that I would dish up my plate in the kitchen, where I could weigh things and then pop them onto my plate, then take my plate out and have it ready to go (all estimated and pre-decided with how much PERT I needed to take) when everyone else was ready to eat.

That also inspired some flexibility in the choices of what I was eating, too. Instead of cooking a small, separate gluten free turkey (from which there were usually too many leftovers), I decided instead to go with a pre-made meal that is turkey, mashed potatoes, gravy, and a side of green beans. “Pre-made” may sound gross, but there’s a brand that does mail-order ready-made gluten free meals that are refrigerated and you only have to microwave them. And I happen to really like their turkey dinner one. So this year I decided to get several of those turkey meals, so that my turkey, mashed potatoes, and gravy were already pre-portioned and I can happily use the nutrition counts on the package. That’s the majority of what I was stressing about measuring/estimating! So that takes out a) a lot of work of making a separate GF turkey and b) makes it easier because I already have counts for the biggest portions of my plate.

I will still make a box of gluten free stuffing, but that’s essentially only one thing for which I’ll need to use the scale to estimate the serving size and nutrition counts. Otherwise, I’ll microwave my turkey meal, put it on my nice plate, add my portion of stuffing, and be able to take it to the table and eat just like everyone else.

I’ve also worked to take the guesswork and stress out of dessert, too.

I realized a few years ago that no one was eating any of the GF desserts I brought, even when I would specially hand-make gluten free pumpkins pies. In part because no one wanted to “take” my food (even if I offered it to them); but there’s also a bias that GF stuff is less good (which is sometimes true) and there’s a gluten-y option so why not just eat that? But I realized that I miss the joy of being able to pick from 2-3 dessert options just like everyone else. So instead of making or bringing one big GF pie and having a slice and having way too many leftovers, I’d just as soon get a frozen miniature gluten free pumpkin pie. And last year, I decided to get *two* miniature pies – for options! Then I could be like everyone else and decide on a whim whether I felt like pumpkin pie or a different flavor of pie. So that’s what I’m doing this year, too. I got 3 miniature pies – pumpkin, lemon, and apple. Yum!

The other thing this thought exercise has brought is the realization that if I’m making/preparing/bringing all my own food, I don’t have to limit myself to just eating it on Thanksgiving. This way I’ll get to have more moderate portions multiple times, without feeling inclined to overeat at the main Thanksgiving meal – because my meal can be repeated multiple times throughout the week, complete with a selection of tasty GF pie options.

I spent part of last week stressed about figuring out what to eat, what the nutrition counts are, etc. But I’ve tried to turn this into an upside, which I think it actually is (given my situation of also having celiac/GF to contend with alongside figuring out EPI).

  • Tips for holidays for those of us with chronic illnesses

This also reminded me how helpful I find it to separate the stressful decision making (what am I going to eat) and the math (what are the counts; how many enzymes does this mean I need?) from the act of making and consuming the food. All together, those can feel stressful and overwhelming (especially if I’m already stressed and overwhelmed about anything else). Separating those actions takes the time pressure off.

If you’re dealing with food allergies or food limitations or needing to dose medication (like enzymes) for your food, this is one way that I deal with reducing stress: planning ahead as much as possible and having as much done in advance as possible.

I also do this for diabetes when possible, such as when I’m planning for a trip or a holiday week with lots of busy activities. I take some time in advance and set out needed supplies for a pump site change; I also pre-fill two or three reservoirs with insulin, so instead of having to do a reservoir AND change my site, I’ve done half the work and reduced the friction. With the reservoir set up ready to go and the pump site sitting on my bathroom counter, it makes it feel easier to change my pump site (even though it’s not that much more work, it feels like I’ve made the amount of time and hassle it takes a lot more doable).

  • Remember that you can ask for help

The final thing that I did to reduce stress was to ask for help. I told Scott (my husband) what I was stressing about. He asked how he could help, and mainly that was discussing my options and what I wanted to possibly eat and discussing the different options from bringing the scale to the table vs plating my food in the kitchen all the way to making different food (which I ultimately chose).

I also assigned him a task to help me do my nutrition estimates. One of the frozen GF individual-sized pies I bought is from an amazing GF bakery in Western Washington, but because they’re a small bakery their items don’t have nutrition counts. As he’s done in the past, I told him I want help a) weighing the pie and b) looking up GF apple pies to get a general ballpark nutrition estimate. We’d then use the weight of my actual pie to create an estimated count based off of similar GF apple pies with nutrition counts. It’s not perfect, but it’s better than my wild guessing.

And, having him help makes it feel more manageable overall, because I’m not doing it “all” by myself.

You don’t have to do it by yourself all the time. No, no one can swallow your enzyme pills for you, but the people in your life can help you look up nutrition information or find safe places for you to eat or find safe options that you can eat. Sometimes you need to ask for them to help, because people don’t always know that they can help. And be clear with them, whether you’re just venting and want a listening ear (valuable!) or whether you’re looking for brainstorming ideas and solutions for a particular thing – which can also be super helpful. But remember to ask. Don’t keep it all to yourself; you are loved and people want to help but they may not know how to help.

You’ll notice that the title of this blog post was about modifying things…but I didn’t modify my food choices at all in the sense of “reducing” my food as one might infer from traditional thinking about meal modifications. I’m not eating fewer grams of fat because I have exocrine pancreatic insufficiency. Medically, in general, it’s no longer recommended for people with EPI to consume lower fat diets than the general population. Instead, we dose enzymes to match the amount of fat (and protein and carbs) that we are eating. It’s similar to type 1 diabetes and insulin. Before insulin was discovered, people were on the starvation diet (to prolong dying); but once insulin was discovered we have been able to eat the same diet as other people, as long as we cover what we are eating with insulin. Individually, you may CHOOSE a different, specific diet approach that works for you; but medically, it’s not necessary to modify things in general based on EPI or type 1 diabetes. The biggest/primary modifications I make are to not eat gluten, because I have celiac disease. Otherwise, I estimate the carbs (to tell my open source automated insulin delivery system that I’m eating) and fat and protein (to calculate how many enzymes I should be taking for EPI) in what I’m eating and carry on, just like everyone else.

Modifying holiday meals with exocrine pancreatic insufficiency and a few tips for reducing stress at the holidays with chronic illnesses in general

Costs, Price and Calculations for Living With Diabetes and Exocrine Pancreatic Insufficiency and Celiac and Graves

Living with diabetes is expensive. However, the cost and price goes beyond the cost of insulin, which you may have heard about lately. In addition to insulin, you need tools and supplies to inject the insulin (e.g. syringes, insulin pens, or an insulin pump). Depending on those methods, you need additional supplies (e.g. pen needles for insulin pens, reservoirs and infusion sets for insulin pumps). You also need blood glucose monitoring supplies, whether that is meter and up to a dozen glucose test strips a day and/or a continuous glucose monitor which is made up of a disposable sensor and a reusable transmitter.

All those costs add up on a daily basis for people living with diabetes, even if you have health insurance.

Understanding the costs of living with chronic illness with health insurance in the US

Every year in the US we have “open enrollment” time when we opt-in or enroll into our choice of health insurance plan for the following year. I am lucky and have access to insurance through my husband’s employer, who covers part of the cost for him and me (as a spouse). We have a high-deductible (HSA-qualified) health plan, so our deductible (the amount we must pay before insurance begins to pay for a portion of the costs) is usually around $1,500-$2,500 USD for me. After that, I might pay either a fixed copay ($10 or $25 or similar) for a doctor’s visit, or a percentage (10% or 20%) while the insurance covers the rest of the cost. Then there is a fixed “out of pocket (OOP) max” cost for the year, which might be something like $3,000 USD total. Sometimes the OOP max is pretty close to the deductible, because we typically choose the ‘high deductible’ plan (with no monthly cost for the insurance plan) over a plan where we have a lower deductible but pay a monthly premium for the insurance.

That’s a very rough summary of how I see my health insurance. Everyone has different health insurers (the company providing the insurance) and different plans (the costs will be different based on whether it’s through a different employer or if it’s an individual plan).

So the costs to people with diabetes can vary quite a bit in the US, depending on whether you have insurance: there is variation in the monthly cost of the plan, the amount of the deductible, and the amount of the out of pocket max.

In order to choose my plan for the following year, I look at the total cost for the year of my health supplies and health care, then look at the plans. Usually, the high deductible plan “feels” more expensive because I might have to reach $2,500 before insurance kicks in; however, the out of pocket cap may only be $500 beyond that, so that I’m going to pay a maximum of $3,000 for the year in insurance-covered costs*. There are other types of plans that are lower deductible, such as insurance kicking in after a $250 deductible. That sounds better, right? Well, those plans come with a monthly cost (premium) of $250. So you need to factor that in ($250×12=$3,000) alongside the deductible and any costs up to the out of pocket max ($2,500). From this, you’d pay the $3,000 total yearly premium plus up to $2,500 OOP, or $5,500. Thus, even though it has a lower deductible and OOP, you’re in total paying much more ($5,500 vs $3,000) if you’re someone like me.

Why? Because I have >$3,000 of health supply costs every year.

This is why every few years (mostly after I forget what I learned the last time), I do the math on how much my supply costs to see if I’m still making the most cost-effective choices for me with my insurance plans.

I wanted to share this math methodology below, also because this year I have new variables, which are two new chronic diseases (exocrine pancreatic insufficiency and Graves) that add additional costs and healthcare needs and require me to want to re-check my math.

* Clarifying that previously and most years I pay out of pocket for minor, relatively low-cost health supplies like vitamins or tape to cover my CGM that I buy and do not get through insurance coverage, so my total costs are usually over that OOP max, but likely not by more than a few hundred dollars.

Note: Do not attempt to use this as an absolute cost of diabetes for anyone else. These numbers are based on my use cases in terms of volume of insulin, insurance coverage, etc. Ditto for trying to use the costs for EPI. Where relevant below, I provide rough estimates of my methodology so that another individual with diabetes or EPI/PEI could use similar methods to calculate their own rough costs, if they wished. However, this cannot be used to determine any average cost to people with diabetes more broadly, so don’t excerpt or cite this in those ways. This is purely n=1 math with conclusions that are unique to this n=1 (aka me) but with methods that can be extended for others.

I’ll cover my estimates for costs of diabetes, celiac, exocrine pancreatic insufficiency (EPI or PEI), and Graves’ disease below. This doesn’t account for visits (e.g. doctor’s appointments), lab tests, or other health costs such as x-rays for breaking bones, because those vary quite a bit year to year and aren’t guaranteed fixed costs. But the supplies I need for diabetes, EPI, etc are fixed costs, which I use to anchor my math. Given that they end up well above my OOP max, the then-variable amount of other costs (doctor’s appointments, lab work, etc) is minor in comparison and irrelevant regardless of how much it varies year to year.

The costs (for me) of daily living with diabetes

(You read the caveat note above, right? This is my math based on my volume of insulin, food intake, personal insulin sensitivity, etc. Lots of variables, all unique to me.)

To calculate the yearly costs of living with diabetes, I make a list of my diabetes supplies.

Primarily for me, those are:

  • Insulin
  • CGM sensors
  • CGM transmitter
  • Pump sites
  • Reservoirs

(Not included: meter/test strips or the cost of a pump or the cost of any hardware I’m using for my open source automated insulin delivery. I’ve not bought a new in-warranty pump in years, and that alone takes care of the OOP max on my insurance plan if I were to buy a pump that year. Anyway, the above list is really my recurring regular costs, but if you were purchasing a pump or on a subscription plan for a pump, you’d calculate that in as well).

First, I calculate the daily cost of insulin. I take the cost of a vial of my insulin and divide it by 1,000, because that’s how many units a vial of insulin has. Then I multiply that by the average number of units I use per day to get the cost per day of insulin, which for me is $4.36. (The yearly cost of insulin would be $1,592.)

Then, I calculate my CGM sensors. I take the total cost for a 3 month order of sensors and divide by the number of sensors; then divide by 10 days (because a sensor lasts about 10 days) to get the cost per day of a CGM sensor: about $11 per day. But, you also have to add in the cost of the re-usable transmitter. Again, factor the cost of a transmitter over the number of days it covers; for me it’s about $2 per day. In total, the cost per day of CGM is about $13 and the yearly cost of CGM is roughly $4,765.

Next is pump sites and reservoirs. You need both to go with your insulin pump: the pump site is the catheter site into your body and the tubing (this cumulatively gets replaced every few days), and the reservoir is disposable and is filled with insulin. The cost per day of pump sites and reservoirs is about $6 ($4.67 for a pump site and $1.17 for a reservoir) and the yearly cost of pump sites and reservoirs is $2,129.

If you add up these supplies (pump sites and reservoirs, CGM sensor and transmitter, insulin), the daily cost of diabetes for me is about $23. The yearly cost of diabetes for me is $8,486.

Give that $8,486 is well over the out of pocket max cost of $3,000, you can see why that for diabetes alone there is reason to pick the high deductible plan and pay a max of $3,000 for these supplies out of pocket.

The daily and yearly costs of living with celiac disease

But I don’t just have type 1 diabetes, so the above are not my only health supply costs.

I also have celiac disease. The treatment is a 100% gluten free diet, and eating gluten free is notoriously more expensive than the standard cost of food, whether that is groceries or eating out.

However, the cost of gluten free food isn’t covered by health insurance, so that doesn’t go in my cost calculation toward pricing the best insurance plan. Yet, it does go into my “how much does it cost every day from my health conditions” mental calculation.

I recently looked at a blog post that summarized the cost of gluten free groceries by state compared to low/medium/high grocery costs for the average person. By extrapolating my state’s numbers from a high-cost grocery budget, plus adding $5 each for eating out twice a week (typically gluten free food has at least a $2-3 surcharge in addition to being at higher cost restaurants, plus the fact that I can’t go eat at most drive-throughs, which is why I use $5/meal to offset the combined cost of the actual surcharge plus my actual options being more expensive).

I ended up estimating about a $3 daily average higher cost of being gluten free, or $1,100 per year cost of eating gluten free for celiac.

That’s probably an underestimate for me, but to give a ballpark, that’s another $1,000 or more I’m paying out of pocket in addition to healthcare costs through insurance.

The daily and yearly cost of living with exocrine pancreatic insufficiency and the daily and yearly cost of pancreatic enzyme replacement therapy

I spent a pleasant (so to speak) dozen or so years when “all” I had to pay for was diabetes supplies and gluten free food. However, in 2022, I was diagnosed with exocrine pancreatic insufficiency (and more recently also Graves’ disease, more on that cost below) and because I have spent ~20 years paying for diabetes, I wasn’t super surprised at the costs of EPI/PEI. However, most people get extreme sticker shock (so to speak) when they learn about the costs of pancreatic enzyme replacement therapy (PERT).

In summary, since most people don’t know about it: exocrine pancreatic insufficiency occurs for a variety of reasons, but is highly correlated with all types of diabetes, celiac, and other pancreatic conditions. When you have EPI, you need to take enzymes every time you eat food to help your body digest fat, protein, and carbohydrates, because in EPI your pancreas is not producing enough enzymes to successfully break down the food on its own. (Read a lot more about EPI here.)

Like diabetes, where different people may use very different amounts of insulin, in EPI people may need very different amounts of enzymes. This, like insulin, can be influenced by their body’s makeup, and also by the composition of what they are eating.

I use PERT (pancreatic enzyme replacement therapy) to also describe the prescription enzyme pills used for EPI. There are 6 different brands approved by the FDA in the US. They also come in different sizes; e.g. Brand A has 3,000, 6,000, 12,000, 24,000, 36,000 size pills. Those size refer to the units of lipase. Brand B has 3,000, 5,000, 10,000, 15,000, 20,000, 25,000, 40,000. Brands C, D, E and F have similar variety of sizes. The point is that when people compare amounts of enzymes you need to take into account 1) how many pills are they taking and 2) how much lipase (and protease and amylase) each of those pills are.

There is no generic for PERT. PERT is made from ground up pig pancreas. It’s expensive.

There are over the counter (OTC) enzymes made from alternative (plant etc) sources. However, there are ZERO studies looking at safety and efficacy of them. They typically contain much less lipase per pill; for example, one OTC brand pill contains 4,000 units of lipase per pill, or another contains 17,500 units of lipase per pill.

You also need to factor in the reliability of these non-approved pills. The quality of production can vary drastically. I had one bottle of OTC pills that was fine; then the next bottle of OTC pills I started to find empty capsules and eventually dumped them all out of the bottle and actually used a colander to filter out all of the enzyme powder from the broken capsules. There were more than 30 dud pill capsules that I found in that batch; in a bottle of 250 that means around 12% of them were unusable. That makes the reliability of the other ones suspect as well.

A pile of powder in the sink next to a colander where a bunch of pills sit. The colander was used to filter out the loose powder. On the right of the image is a baggie with empty pill capsules, illustrating where this loose powder came from. This shows the unreliability of over the counter (OTC) enzymes.

If the reliability of these pills even making it to you without breaking can be sketchy, then you need to assume that the counts of how much lipase (and protease and amylase) may not be precisely what the label is reporting. Again, there have been no tests for efficacy of these pills, so anyone with EPI or PEI needs to use these carefully and be aware of these limitations.

This unreliability isn’t necessarily true of all brands, however, or all types of OTC enzymes. That was a common brand of pancrelipase (aka contains lipase, protease, and amylase). I’ve had more success with the reliability of a lipase-only pill that contains about 6,000 units of lipase. However, it’s more expensive per pill (and doesn’t contain any of the other enzymes). I’ve used it to “top off” a meal with my prescription PERT when my meal contains a little bit more fat than what one PERT pill would “cover” on its own.

This combination of OTC and prescription PERT is where the math starts to get complicated for determining the daily cost and yearly cost of pancreatic enzyme replacement therapy.

Let’s say that I take 6-8 prescription PERT pills every day to cover what I eat. It varies because I don’t always eat the same type or amount of food; I adjust based on what I am eating.

The cost with my insurance and a 90 day supply is $8.34 for one PERT pill.

Depending on whether I am eating less fat and protein on a particular day and only need 6 PERT, the cost per day of enzymes for EPI might be $50.04, whereas if I eat a little more and need 8 PERT, the cost per day of enzymes for EPI could be up to $66.72.

The costs per year of PERT for EPI then would range from $18,000 (~6 per day) to $24,000 (~8 per day).

Please let that sink in.

Eighteen to twenty four thousand dollars to be able to successfully digest my food for a single year, not taking into account the cost of food itself or anything else.

(See why people new to EPI get sticker shock?!)

Even though I’m used to ‘high’ healthcare costs (see above estimates of $8,000 or more per year of diabetes costs), this is a lot of money. Knowing every time that I eat it “costs” at least one $8.34 pill is stressful. Eating a bigger portion of food and needing two or three pills? It really takes a mental toll in addition to a financial cost to think about your meal costing $25.02 (for 3 pills) on top of the cost of the food itself.

This is why OTC pills are interesting, because they are drastically differently priced. The 4,000 unit of lipase multi-enzyme pill that I described costs $0.09 per pill, which is about $0.02 per 1000 units of lipase. Compared to my prescription PERT which is $0.33 per 1000 units of lipase, it’s a lot cheaper.

But again, check out those pictures above of the 4,000 units of lipase OTC pills. Can you rely on those?

Not in the same way you can with the prescription PERT.

In the course of taking 1,254 prescription PERT pills this year (so far), I have not had a single issue with one of those pills. So in part the high cost is to ensure the safety and efficacy. Compare that to 12% (or more) of the OTC pills being complete duds (empty pill capsules that have emptied their powder into the bottle) and some % of unreliability even with a not-broken capsule.

Therefore it’s not feasible to me to completely replace prescription PERT with OTC pills, although it’s tempting purely on price.

I previously wrote at a high level about the cost calculations of PERT, but given my desire to look at the annual cost for estimating my insurance plan (plus many more months of data), I went deeper into the math.

I need to take anywhere from 2-6 OTC pills (depending on the brand and size) to “match” the size of one PERT. I found a new type (to me) of OTC pills that are more units of lipase (so I need 2 to match one PERT) instead of the two other kinds (which took either 4 or 6 to match one PERT), which would enable me to cut down on the number of pills swallowed.

The number of pills swallowed matters.

So far (as of mid-November, after starting PERT in early January), I have swallowed at least 1,254 prescription PERT enzyme pills. I don’t have as much precision of numbers on my OTC pills because I don’t always log them (there’s probably a few dozen I haven’t written down, but I probably have logged 95% of them in my enzyme tracking spreadsheet that I use to help calculate the amount needed for each meal/snack and also to look at trends.), but it’s about 2,100 OTC enzyme pills swallowed.

This means cumulatively this year (which is not over), I have swallowed over 3,300 enzyme pills. That’s about 10 enzyme pills swallowed every day!

That’s a lot of swallowing.

That’s why switching to a brand that is more units of lipase per pill, where 2 of these new OTC kind matches one PERT instead of 4-6, is also significant. While it is also slightly cheaper than the combination of the two I was using previously (a lipase-only and a multi-enzyme version), it is fewer pills to achieve the same amount.

If I had taken prescription PERT instead of the OTCs, it would have saved me over 1,600 pills to swallow so far this year.

You might be thinking: take the prescription PERT! Don’t worry about the OTC pills! OMG that’s a lot of pills.

(OMG, it *is* a lot of pills: I think that as well now that I’m adding up all of these numbers.)

Thankfully, so far I am not having issues with swallowing these pills. As I get older, that might change and be a bigger factor in determining my strategy for how I dose enzymes; but right now, that’s not the biggest factor. Instead, I’m looking at efficacy (getting the right amount of enzymes to match my food), the cost (in terms of price), and then optimizing and reducing the total number of pills if I can. But the price is such a big variable that it is playing the largest role in determining my strategy.

How should we collectively pay for this?

You see, I don’t have EPI in a vacuum.

As I described at the top of the post, I already have $8,000+ of yearly diabetes costs. The $18,000 (or $24,000 or more) yearly enzyme costs are a lot. Cumulatively, just these two alone mean my supply costs are $26-32,000 (or more), excluding other healthcare costs. Thankfully, I do have insurance to cover costs after I hit my out of pocket max, but the bigger question is: who should be paying for this?

If my insurer pays more, then the employer pays more, which means employees get worse coverage on our pooled insurance plan. Premiums go up and/or the plans cover less, and the out of pocket costs to everyone goes up.

So while it is tempting to try to “stuff” all of my supply needs into insurance-covered supplies, in order to reduce my personal out of pocket costs in the short run, that raises costs for everyone in the long run.

This year, for all of those (remember I estimated 2,100 OTC pills swallowed to date) OTC pills I bought, it cost me $515. Out of pocket. Not billed through insurance; they know nothing about it.

It feels like a lot of money. However, if you calculate how many PERT it replaced and the cost per PERT pill, I saved $4,036 by swallowing 1,652 extra pills.

Is paying $500 to save everyone else $4000 worth it?

I think so.

Again, the “price” question gets interesting.

The raw costs of yearly supplies I don’t pay completely; remember with health insurance I am capped at $3,000 out of pocket for supplies I get through insurance. However, again, it’s worth considering that additional costs do not cost me but they cost the insurer, and therefore the employer and our pool of people in this insurance plan and influences future costs for everyone on insurance. So if I can afford (although I don’t like it) $500-ish out of pocket and save everyone $4,000 – that’s worth doing.

Although, I think I can improve on that math for next year.

I was taking the two OTC kinds that I had mentioned: one that was lipase-only and very reliable, but $0.28/pill or $0.04 per 1000 units of lipase (and contains ~6000 units of lipase). The less reliable multi-enzyme pill was cheaper ($.09) per pill but only contains 4000 units of lipase, and was $.02 per 1000 units of lipase. That doesn’t factor in the duds and the way I had to increase the number of pills to account for the lack of faith I had in the 4000 units of lipase always being 4000 units of lipase.

The new OTC pill I mentioned above is $0.39 per pill, which is fairly equivalent price to a combined lipase-only and multi-enzyme pill. In fact, I often would take 1+1 for snacks that had a few grams of protein and more than a few grams of lipase. So one new pill will cover 17,000 units of lipase (instead of 10,000, made up of 6000+4000) at a similar cost: $0.39 instead of $0.36 (for the two combined). And, it also has a LOT more protease per pill, too. It has >2x the amount of protease as the multi-enzyme OTC pill, and is very similar to the amount of protease in my prescription PERT! I’ve mostly discussed the math by units of lipase, but I also dose based on how much protein I’m eating (thus, protease to cover protein the way lipase covers fat digestion), so this is also a benefit. As a result, two of the new OTC pill now more than match 1 PERT on lipase, double the protease to 1 PERT, and is only two swallows instead of the 4-6 swallows needed with the previous combination of OTCs.

I have only tested for a few days, but so far this new OTC is working fairly well as a substitute for my previous two OTC kinds.

Given the unreliability of OTCs, even with different brands that are more reliable than the above picture, I still want to consume one prescription PERT to “anchor” my main meals. I can then “top off” with some of the new OTC pills, which is lower price than more PERT but has the tradeoff cost of slightly less reliability compared to PERT.

So with 3 main meals, that means at least 3 PERT per day ($8.34 per pill) at $25.02 per day in prescription PERT costs and $9,132 per year in prescription PERT costs. Then to cover the additional 3-5 PERT pills I would otherwise need, assuming 2 of the new OTC covers 1 PERT pills, that is 6-10 OTC pills.

Combined, 3 PERT + 6 OTC pills or 3 PERT + 10 OTC pills would be $27.36 or $28.92 per day, or $9,986 or $10,556 per year.

Still quite a bit of money, but compared to 6-8 PERT per day (yearly cost $18,264 to $24,352), it saves somewhere between $7,708 per year (comparing 6 PERT to 3 PERT + 6 OTC pills per day) all the way up to $14,366 per year (comparing 8 PERT to 3 PERT +10 OTC pills per day).

And coming back to number of pills swallowed, 6 PERT per day would be 2,190 swallows per year; 8 PERT pills per day is 2,920 swallows per year; 3 PERT + 6 OTC is 9 pills per day which is 3,285 swallows per year; and 3 PERT + 10 OTC is 13 swallows per day which is 4,745 swallows per year.

That is 1,095 more swallows per year (3PERT+6 OTC vs 6 PERT) or 1,825 more swallows per year (3 PERT + 10 OTC vs 8 PERT).

Given that I estimated I swallowed ~10 enzyme pills per day this year so far, the estimated range of 9-13 swallows with the combination of PERT and OTC pills (either 3 PERT + (6 or 10) OTC) for next year seems reasonable.

Again, in future this might change if I begin to have issues swallowing for whatever reason, but in my current state it seems doable.

The daily and annual costs of thyroid treatment for Graves’ Disease

No, we’re still not done yet with annual health cost math. I also developed Graves’ disease with subclinical hyperthyroidism this year, putting me to a grand total of 4 chronic health conditions.

Luckily, though, the 4th time was the charm and I finally have a cheap(er) one!

My thyroid med DOES have a generic. It’s cheap: $11.75 for 3 months of a once-daily pill! Woohoo! That means $0.13 per day cost of thyroid treatment and $48 per year cost of thyroid treatment.

(Isn’t it nice to have cheap, easy math about at least one of 4 things? I think so!)

Adding up all the costs of diabetes, celiac disease, exocrine pancreatic insufficiency and Graves’ Disease

High five if you’ve read this entire post; and no problem if you skimmed the sections you didn’t care about.

Adding it all up, my personal costs are:

  • Diabetes: $23.25 per day; $8,486 per year
  • Celiac: $3 per day; $1,100 per year (all out of pocket)
  • Exocrine Pancreatic Insufficiency:
    • Anywhere from $50.04 up to $66.72 per day with just prescription PERT pills; $18,265 (6 per day) to $24,353 (8 per day) per year
    • With a mix of prescription and OTC pills, $27.36 to $28.92 per day; $9,986 to $10,556 per year.
    • Of this, the out of pocket cost for me would be $2.34 to $3.90 per day; or $854 up to $1,424 per year.
  • Thyroid/Graves: $0.13 per day; $48 per year

Total yearly cost:

  • $27,893 (where EPI costs are 6 prescription PERT per day); 2,190 swallows
  • $33,982 (where EPI costs are 8 prescription PERT per day); 2,920 swallows
  • $19,615 (where EPI costs are 3 prescription PERT and 6 OTC per day); 3,285 swallows
  • $20,185 (where EPI costs are 3 prescription PERT and 9 OTC per day); 4,745 swallows

* My out of pocket costs per year are $854-$1424 for EPI when using OTCs to supplement prescription PERT and an estimated $1,100 for celiac-related gluten free food costs. 

** Daily cost-wise, that means $76.42, $93.10, $53.74, or $55.30 daily costs respectively.

*** The swallow “cost” is 1,095-1,825 more swallows per year to get the lower price cost of enzymes by combining prescription and OTC.

Combining these out of pocket costs with my $3,000 out of pocket max on my insurance plan, I can expect that I will therefore pay around $4,900 to $5,600 next year in health supply costs, plus another few hundred for things like tape or vitamins etc. that aren’t major expenses.

TLDR: 

  • Diabetes is expensive, and it’s not just insulin.
    • Insulin is roughly 19% of my daily cost of diabetes supplies. CGM is currently 56% of my diabetes supply costs.
  • EPI is super expensive.
    • OTC pills can supplement prescription PERT but have reliability issues.
    • However, combined with prescription PERT it can help drastically cut the price of EPI.
    • The cost of this price reduction is significantly more pills to swallow on a daily basis, and adds an additional out of pocket cost that insurance doesn’t cover.
    • However in my case; I am privileged enough to afford this cost and choose this over increasing everyone in my insurance plan’s costs.
  • Celiac is expensive and mostly an out of pocket cost.
  • Thyroid is not as expensive to manage with daily medication. Yay for one of four being reasonably priced!

REMEMBER to not use these numbers or math out of context and apply them to any other person; this is based on my usage of insulin, enzymes, etc as well as my insurance plan’s costs.

Yearly costs, prices, and calculations of living with 4 chronic diseases (type 1 diabetes, celiac, Graves, and exocrine pancreatic insufficiency)

Regulatory Approval Is A Red Herring

One of the most common questions I have been asked over the last 8 years is whether or not we are submitting OpenAPS to the FDA for regulatory approval.

This question is a big red herring.

Regulatory approval is often seen and discussed as the one path for authenticating and validating safety and efficacy.

It’s not the only way.

It’s only one way.

As background, you need to understand what OpenAPS is. We took an already-approved insulin pump that I already had, a continuous glucose monitor (CGM) that I already had, and found a way to read data from those devices and also to use the already-built commands in the pump to send back instructions to automate insulin delivery via the decision-making algorithm that we created. The OpenAPS algorithm was the core innovation, along with the realization that this already-approved pump had those capabilities built in. We used various off the shelf hardware (mini-computers and radio communication boards) to interoperate with my already approved medical devices. There was novelty in how we put all the pieces together, though the innovation was the algorithm itself.

The caveat, though, is that although the pump I was using was regulatory-approved and on the market, which is how I already had it, it had later been recalled after researchers, the manufacturer, and the FDA realized that you could use the already-built commands in the pump’s infrastructure. So these pumps, while not causing harm to anyone and no cases of harm have ever been recorded, were no longer being sold. It wasn’t a big deal to the company; it was a voluntary recall, and people like me often chose to keep our pumps if we were not concerned about this potential risk.

We had figured out how to interoperate with these other devices. We could have taken our system to the FDA. But because we were using already-off-the-market pumps, there was no way the FDA would approve it. And at the time (circa 2014), there was no vision or pathway for interoperable devices, so they didn’t have the infrastructure to approve “just” an automated insulin delivery algorithm. (That changed many years later and they now have infrastructure for reviewing interoperable pumps, CGM, and algorithms which they call controllers).

The other relevant fact is that the FDA has jurisdiction based on the commerce clause in the US Constitution: Congress used its authority to authorize the FDA to regulate interstate commerce in food, drugs, and medical devices. So if you’re intending to be a commercial entity and sell products, you must submit for regulatory approval.

But if you’re not going to sell products…

This is the other aspect that many people don’t seem to understand. All roads do not lead to regulatory approval because not everyone wants to create a company and spend 5+ years dedicating all their time to it. That’s what we would have had to do in order to have a company to try to pursue regulatory approval.

And the key point is: given such a strict regulatory environment, we (speaking for Dana and Scott) did not want to commercialize anything. Therefore there was no point in submitting for regulatory approval. Regardless of whether or not the FDA was likely to approve given the situation at the time, we did not want to create a company, spend years of our life dealing with regulatory and compliance issues full time, and maybe eventually get permission to sell a thing (that we didn’t care about selling).

The aspect of regulatory approval is a red herring in the story of the understanding of OpenAPS and the impact it is having and could have.

Yes, we could have created a company. But then we would not have been able to spend the thousands of hours that we spent improving the system we made open source and helping thousands of individuals who were able to use the algorithm and subsequent systems with a variety of pumps, CGMs, and mobile devices as an open source automated insulin delivery system. We intentionally chose this path to not commercialize and thus not to pursue regulatory approval.

As a result of our work (and others from the community), the ecosystem has now changed.

Time has also passed: it’s been 8 years since I first automated insulin delivery for myself!

The commercial players have brought multiple commercial AIDs to market now, too.

We created OpenAPS when there was NO commercial option at the time. Now there are a few commercial options.

But it is also an important note that I, and many thousands of other people, are still choosing to use open source AID systems.

Why?

This is another aspect of the red herring of regulatory approval.

Just because something is approved does not mean it’s available to order.

If it’s available to order (and not all countries have approved AID systems!), it doesn’t mean it’s accessible or affordable.

Insurance companies are still fighting against covering pumps and CGMs as standalone devices. New commercial AID systems are even more expensive, and the insurance companies are fighting against coverage for them, too. So just because someone wants an AID and has one approved in their country doesn’t mean that they will be able to access and/or afford it. Many people with diabetes struggle with the cost of insulin, or the cost of CGM and/or their insulin pump.

Sometimes providers refuse to prescribe devices, based on preconceived notions (and biases) about who might do “well” with new therapies based on past outcomes with different therapies.

For some, open source AID is still the most accessible and affordable option.

And in some places, it is still the ONLY option available to automate insulin delivery.

(And in most places, open source AID is still the most advanced, flexible, and customizable option.)

Understanding the many reasons why someone might choose to use open source automated insulin delivery folds back into the understanding of how someone chooses to use open source automated insulin delivery.

It is tied to the understanding that manual insulin delivery – where someone makes all the decisions themselves and injects or presses buttons manually to deliver insulin – is inherently risky.

Automated insulin delivery reduces risk compared to manual insulin delivery. While some new risk is introduced (as is true of any additional devices), the net risk reduction overall is significantly large compared to manual insulin delivery.

This net risk reduction is important to contextualize.

Without automated insulin delivery, people overdose or underdose on insulin multiple times a day, causing adverse effects and bad outcomes and decreasing their quality of life. Even when they’re doing everything right, this is inevitable because the timing of insulin is so challenging to manage alongside dozens of other variables that at every decision point play a role in influencing the glucose outcomes.

With open source automated insulin delivery, it is not a single point-in-time decision to use the system.

Every moment, every day, people are actively choosing to use their open source automated insulin delivery system because it is better than the alternative of managing diabetes manually without automated insulin delivery.

It is a conscious choice that people make every single day. They could otherwise choose to not use the automated components and “fall back” to manual diabetes care at any moment of the day or night if they so choose. But most don’t, because it is safer and the outcomes are better with automated insulin delivery.

Each individual’s actions to use open source AID on an ongoing basis are data points on the increased safety and efficacy.

However, this paradigm of patient-generated data and patient choice as data contributing toward safety and efficacy is new. There are not many, if any, other examples of patient-developed technology that does not go down the commercial path, so there are not a lot of comparisons for open source AID systems.

As a result, when there were questions about the safety and efficacy of the system (e.g., “how do you know it works for someone else other than you, Dana?”), we began to research as a community to address the questions. We published data at the world’s biggest scientific conference and were peer-reviewed by scientists and accepted to present a poster. We did so. We were cited in a piece in Nature as a result. We then were invited to submit a letter to the editor of a traditional diabetes journal to summarize our findings; we did so and were published.

I then waited for the rest of the research community to pick up this lead and build on the work…but they didn’t. I picked it up again and began facilitating research directly with the community, coordinating efforts to make anonymized pools of data for individuals with open source AID to submit their data to and for years have facilitated access to dozens of researchers to use this data for additional research. This has led to dozens of publications further documenting the efficacy of these solutions.

Yet still, there was concern around safety because the healthcare world didn’t know how to assess these patient-generated data points of choice to use this system because it was better than the alternative every single day.

So finally, as a direct result of presenting this community-based research again at the world’s largest diabetes scientific conference, we were able to collaborate and design a grant proposal that received grant funding from New Zealand’s Health Research Council (the equivalent of the NIH in the US) for a randomized control trial of the OpenAPS algorithm in an open source AID system.

An RCT is often seen as the gold standard in science, so the fact that we received funding for such a study alone was a big milestone.

And this year, in 2022, the RCT was completed and our findings were published in one of the world’s largest medical journals, the New England Journal of Medicine, establishing that the use of the OpenAPS algorithm in an open source AID was found to be safe and effective in children and adults.

No surprises here, though. I’ve been using this system for more than 8 years, and seeing thousands of others choose the OpenAPS algorithm on an ongoing, daily basis for similar reasons.

So today, it is possible that someone could take an open source AID system using the OpenAPS algorithm to the FDA for regulatory approval. It won’t likely be me, though.

Why not? The same reasons apply from 8 years ago: I am not a company, I don’t want to create a company to be able to sell things to end users. The path to regulatory approval primarily matters for those who want to sell commercial products to end users.

Also, regulatory approval (if someone got the OpenAPS algorithm in an open source AID or a different algorithm in an open source AID) does not mean it will be commercially available, even if it will be approved.

It requires a company that has pumps and CGMs it can sell alongside the AID system OR commercial partnerships ready to go that are able to sell all of the interoperable, approved components to interoperate with the AID system.

So regulatory approval of an AID system (algorithm/mobile controller design) without a commercial partnership plan ready to go is not very meaningful to people with diabetes in and of itself. It sounds cool, but will it actually do anything? In and of itself, no.

Thus, the red herring.

Might it be meaningful eventually? Yes, possibly, especially if we collectively have insurers to get over themselves and provide coverage for AID systems given that AID systems all massively improve short-term and long-term outcomes for people with diabetes.

But as I said earlier, regulatory approval does necessitate access nor affordability, so an approved system that’s not available and affordable to people is not a system that can be used by many.

We have a long way to go before commercial AID systems are widely accessible and affordable, let alone available in every single country for people with diabetes worldwide.

Therefore, regulatory approval is only one piece of this puzzle.

And it is not the only way to assess safety and efficacy.

The bigger picture this has shown me over the years is that while systems are created to reduce harm toward people – and this is valid and good – there have been tendencies to convert to the assumption that therefore the systems are the only way to achieve the goal of harm reduction or to assess safety and efficacy.

They aren’t the only way.

As explained above, FDA approval is one method of creating a rubber stamp as a shorthand for “is this considered to be safe and effective”.

That’s also legally necessary for companies to use if they want to sell products. For situations that aren’t selling products, it’s not the only way to assess safety and efficacy, which we have shown with OpenAPS.

With open source automated insulin delivery systems, individuals have access to every line of code and can test and choose for themselves, not just once, but every single day, whether they consider it to be safer and more effective for them than manual insulin dosing. Instead of blindly trusting a company, they get the choice to evaluate what they’re using in a different way – if they so choose.

So any questions around seeking regulatory approval are red herrings.

A different question might be: What’s the future of the OpenAPS algorithm?

The answer is written in our OpenAPS plain language reference design that we posted in February of 2015. We detailed our vision for individuals like us, researchers, and companies to be able to use it in the future.

And that’s how it’s being used today, by 1) people like me; and 2)  in research, to improve what we can learn about diabetes itself and improve AID; and 3) by companies, one of whom has already incorporated parts of our safety design as part of a safety layer in their ML-based AID system and has CE mark approval and is being sold and used by thousands of people in Europe.

It’s possible that someone will take it for regulatory approval; but that’s not necessary for the thousands of people already using it. That may or may not make it more available for thousands more (see earlier caveats about needing commercial partnerships to be able to interoperate with pumps and CGMs).

And regardless, it is still being used to change the world for thousands of people and help us learn and understand new things about the physiology of diabetes because of the way it was designed.

That’s how it’s been used and that’s the future of how it will continue to be used.

No rubber stamps required.

Regulatory Approval: A Red Herring

What It Feels Like To Take Thyroid Medication

I’ve been taking thyroid medication for a few months now. It surprised me how quickly I saw some symptom resolution. As I wrote previously, I started taking thyroid medication and planned to get more lab work at the 8 week mark.

The theory is that thyroid medication influences the production of new thyroid hormones but not the stored thyroid hormones; thus, since it takes around 6 weeks for you to replace your stores of thyroid hormones, you usually get blood work no sooner than 6 weeks after making a change to thyroid medication.

I had noted, though, that some of my symptoms included changes in my heart rate (HR). This was both my overnight resting HR and how my HR felt during the day. I had hypothesized:

Given I have a clear impact to my heart rate, I’m hypothesizing that I might see changes to the trend in my heart rate data sooner than 6 weeks – 2 months, so that’ll be interesting to track!

This turned out to be an accurate prediction!

My provider had suggested starting me on a low dose of “antithyroid” medication. Guidelines typically suggest 10-20mg per day, with plans to titrate (adjust) the dose based on how things are going. However, in my case, I have subclinical hyperthyroidism – not actual hyperthyroidism – which means my thyroid levels themselves (T3 and T4) were in range. What was out of range for me was my thyroid stimulating hormone (TSH), which was below range, and my thyroid antibodies, all of which were above range. (If you want to read about my decision making and my situation with Graves’ disease with eye symptoms and subclinical hyperthyroidism, read my previous post for more details.)

I ended up being prescribed a 5mg dose. Thinking about it, given my T3 and T4 were well within range, that made sense. I started taking it in early August.

What it felt like to start taking antithyroid medication for the first time:

For context, my primary most bothersome symptoms were eye symptoms (eyelid swelling, sometimes getting a red patchy dry area outside the outer corner of my eye, eye pressure that made me not want to wear my contacts); increased resting overnight HR and higher HR during periods of rest during the day; and possibly mood and energy impacts.

  • Within a week (!) of starting the antithyroid medication, my overnight HR began lowering. This can be influenced by other factors like exercise etc., but it was also accompanied by fewer days with higher heart rate while I was sitting and relaxing! I definitely felt a noticeable improvement within a week of my heart rate-related symptoms. 
  • My eyelid swelling went away toward the end of the first week. Then after 3 or so days, it came back again for a few days, then went away for 12 days. It came back for several days, went away for another 6 days. Came back, then…nothing! I went weeks without eyelid swelling and none of the other eye-related symptoms that typically ebbed and flowed alongside the eyelid swelling. HOORAY!
  • It’s unclear how much my mood and energy were directly effected by the wonky thyroid antibody levels compared to being a correlation with the symptoms themselves. (I was also resuming ultramarathon training during this time period, following the recovery of my broken toe.) However, I definitely was feeling more energetic and less grumpy, as noticed by my husband as well.

What is interesting to me is that my symptoms were changed within a week. They often talk in the medical literature about not knowing exactly how the thyroid medication works. In my case, it’s worth noting again for context that I had subclinical hyperthyroidism (in range T3 and T4 but below range TSH) and Graves’ disease (several thyroid antibodies well above range) with correlated eye symptoms. The theory is that the eye symptoms are influenced by the thyroid antibody levels, not the thyroid levels (T3 and T4) themselves. So although the thyroid medication influences the production of new thyroid hormones and it takes 6 weeks to replace your store of thyroid hormones; my working hypothesis is that the symptoms driven by TSH and thyroid antibodies are influenced by the production of those (rather than the stores) and that is why I see a change to my symptoms within a week or so of starting thyroid medication.

I went for repeat lab work at 8 weeks, and I was pretty confident that I would have improved antibody and TSH levels. I wasn’t sure if my T3 and T4 would drop below range or not. The lab work came back in and… I was right! TSH was back to normal range (HOORAY), T3 and T4 were slightly lower than the previous numbers but still nicely in the middle of the range. Yay! However, my TSI (thyroid stimulating immunoglobulin) was still well above range, and slightly higher than last time. Boo, that was disappointing, because there are some studies (example) showing that out of range TSI can be a predictor for those with Graves’ disease for the need to continue antithyroid medication in the future.

Animated gif showing changes to various thyroid labs two days and 8 weeks after annual lab work. T3 and T4 remain in range, TSH returns from below to in range, TSI remains above range; TRAb, TgAB, and TPO were above range but not re-tested at 8 weeks.

As I wrote in my last post:

I am managing my expectations that managing my thyroid antibody and hormone levels will be an ongoing thing that I get to do along with managing insulin and blood sugars and managing pancreatic enzymes. We’ll see!

The TSI was a pointer that although I had reduced all of my symptoms (hooray) and my T3 and T4 were within range, I would probably need ongoing medication to keep things in range.

However, as a result of the lab work, my provider suggested dropping down to 2.5mg dose, to see if that would manage my thyroid successfully without pushing me over to hypothyroidism (low T3 and T4) levels, which can be a risk of taking too much antithyroid medication. He suggested switching to 2.5mg, and repeating lab work in 3 months or if I felt unwell.

I agreed that it was worth trying, but I was a little nervous about reducing my dose, because my T3 and T4 were still well within the middle of normal. And, I had an upcoming very long ultramarathon. Given that with the start of thyroid medication I saw symptoms change within a week, and I was two weeks out from my ultra, I decided to wait until after the ultramarathon so I could more easily monitor and assess any symptoms separately from the taper and ultra experience.

Recovery from my ultramarathon was going surprisingly well, enough so that I felt ready to switch the medication levels pretty soon after my ultra. I started taking the 2.5mg dose (by cutting the 5mg dose in half, as I had some remaining and it was easier than ordering a changed prescription to 2.5mg).

I carefully watched and saw some slight changes to my HR within the first week. But, I was also recovering from an ultramarathon, and that can also influence HR. Again, I was looking at both the overnight resting HR and noting any periods of time during the day where I was resting when my HR was high (for me). I had two days where it did feel high during the day, but the following days I didn’t observe it again, so I chalked that up to maybe being related to ultramarathon recovery.

But a little over a week and my right eye started feeling gunky. I had just been to the eye doctor for my annual exam and all was well and my eye didn’t look red or irritated. I didn’t think much of it. But a few days after that, I had rubbed my right eyelid and realized it felt poofy. I felt my left eyelid in comparison, and the right was definitely swollen in comparison. Looking in the mirror, I could see the swollen eyelid pushing down the corner of my right eye. Just like it had done before I started thyroid medications. Ugh. So eye symptoms were back. A few days later, I also woke up feeling like my eyes hurt and they needed lubrication (eye drops) as soon as I opened my eyes. That, too, had been a hallmark of my eye symptoms from last October onward.

The plan had been to wait until 3 months after this medication change to repeat labs. I’m going to try to wait until the 6-8 week mark again, so we can see what the 2.5mg does to my T3 and T4 levels alongside my TSH. But, my prediction for this next round of lab work is that T3 and T4 will go up (maybe back to the higher end but likely still within range; although the possibility to fully go above range), and that my TSH will have dropped back down below range, because the symptom pattern I am starting to have mimics the symptom pattern I had for months prior to starting the 5mg thyroid medication.

Why only wait 6-8 weeks, when my provider suggested 3 months?

These symptoms are bothersome. The eyelid swelling thankfully subsided somewhat after 4 days (after the point where it got noticeable enough for my husband to also see it compressing my outer corner of my eye, which means anyone would be able to visibly see it), but I’m watching it to see if it returns with a cyclical pattern the way it went away previously, expecting it to likely return to constant every day eye swelling. Since it influences my vision slightly (because the eyelid is pushed down by the swelling), that impacts my quality of life enough to take action sooner. If it gets really bad, I might discuss with my provider and get labs even sooner, but I’m going to try to tough it out to 6-8 weeks to get a full picture of data of how the 2.5mg impacted all of my levels and also see what pattern of symptoms return when, because it will be interesting to compare the symptom levels at 5mg (essentially all gone within 1-2 weeks) and at 2.5mg compared to my original, pre-thyroid medication symptom levels and patterns.

But depending on those labs, I predict that I will return to taking the 5mg dose, and hopefully my symptoms will go away completely and stay away. Then it’ll be a future decision on if/when to try titrating down again; possibly guided by the TSI level, since the TSI was still above range when we had switched me to 2.5mg (despite the change in TSH back to range).

The good news is, though, that in future I should be able to use the 1-2 weeks of symptom data to determine whether a change in dose is working for me or not, instead of having to wait a full 6-8 weeks, because my symptoms seem to be driven by the TSH and antibody levels, rather than out of range T3 and T4 levels (because they were and are still in the middle of the goal range).

I also discussed this with my eye doctor. You’ll note from my previous post that I was very concerned about the eye impacts and symptoms, so I had asked my eye doctor if she’s still comfortable treating me (she is), and we talked about what things would cause me to get a referral to a specialist. So far my symptoms don’t seem on track for that; it would be my eyes protruding from the socket and having pressure that would possibly need surgery. Disappointingly, she confirmed that there’s really no treatment for the symptoms since they’re caused by the antibody levels. There’s no anti-swelling stuff to put on my eyelid to help. Instead, the goal is to manage the antibody levels so they don’t cause the symptoms. (Which is everything I’m talking about doing above, including likely returning to the 5mg dose given that my eye symptoms resumed on the 2.5mg dose).

In summary, I think it is worth noting for anyone with Graves’ disease (whether or not they have subclinical or actual hyperthyroidism) that it is possible to see symptom changes within a week or two of starting or changing your thyroid medication. I can’t find anything in the literature tracking symptom resolution on anything shorter than a 6 week time period, but maybe in the future someone will design a study to capture some of the real-world data and/or run a prospective study to capture this data and see how prevalent this is for symptoms to resolve on a much shorter time frame, for those of us whose symptoms are driven not by thyroid levels themselves (T3 and T4) but for the TSH and TSI and other thyroid antibodies (TPO etc).

If you do start thyroid medication, it’s worth logging your symptoms as soon as  possible, ideally before you start your medication, or if it’s too late for that, start logging them afterward. You can then use that as a comparison in the future for if you reduce, increase, or are directed to stop taking your medication, so you can see changes in the length of time it takes to develop or reduce symptoms and whether the patterns of symptoms change over time.

What it feels like to take thyroid medication

What Do You See When You See (Or Think Of) Diabetes?

What do you see when you see (or think of) diabetes?

In my house, I see small piles of low treatments (for hypoglycemia) in every place that I hang out. On my desk next to my computer. In my bedside table. On the counter next to the door where I grab them before heading out for a run or a walk. On the edge of the bathtub in my shower, because low blood sugars happen everywhere.

Sometimes, one of my nephews spots them in a translucent pocket on my shorts. His brain sees candy at first, not a medical treatment. Which is fine – he’s young. He’s learning that for Aunt Dana, they’re not “candy” or a “treat” – they’re a medical treatment.

All of the nieces and nephews have learned or are learning that Aunt Dana has “robot parts”, which is how they see my pump clipped to my pocket or waist band or the hard lump (CGM sensor) they feel or see on my arm.

What I hope people see, though, is that diabetes is not a death sentence. Thanks to improvements in insulin, insulin delivery, and blood glucose measuring, it’s no longer visibly tied to possible complications of diabetes, like amputations, kidney dialysis, or loss of vision. That is what I saw when I was diagnosed with diabetes in 2002, and what was presented to me.

I hope instead that people see people with diabetes like me living our lives, running 82 mile ultramarathons (for those of us who wish to do that), experiencing pregnancy (for those who wish to do that), achieving our career goals, living life in whatever ways we want to live our lives. Just like everyone else.

It’s worth noting that when typing this, autocorrect in my first sentence suggested “treat” instead of “treatment”.

That’s how computers “see” diabetes, too, with sugar and carbs equivalent with diabetes. Despite the fact that medical research shows that diabetes is a complicated combination of genetics, immune system shenanigans (my words), and numerous other factors not in a person’s control, humans haven’t gotten that message. People are still stigmatized and joked about.

So computers learn that. And that’s what they see.

When I was testing Stable Diffusion (an open source AI tool for generating images) recently, I learned about a site “Lexica” that shows you what other people have generated with similar key words. I thought it would be interesting to get ideas for better images to visualize concepts in posts about diabetes, so I searched diabetes.

A screenshot of search results in Lexica for the term "diabetes". Primarily it is images of people portrayed as very overweight and many images of a lot of food.

I should’ve known better. Humans say and think “diabetes” in response to seeing pictures of carbohydrates, so that’s what computers learn.

AI doesn’t know any better because humans haven’t taught themselves any better.

Sadly, “insulin pump” as a key word is disheartening in a different way.

A screenshot of image results from Lexica for the term "insulin pump", which mostly shows a mix of devices that look like blood glucose meters or pulse oximeters.

There are so few existing visuals and images of people with insulin pumps that the visual images generated by AI are a mix of weird hybrid old school computer components and blood glucose monitors or other medical devices.

“Hypoglycemia” mostly generates cartoons in foreign languages or made up languages that I’m guessing are jokes by people without diabetes about having low blood sugar and using it as an excuse for various things. “Hyperglycemia” brings a mix of the hypoglycemia-style cartoons and the diabetes-style images of carbs and how the AI thinks people with diabetes all look.

I’ve noticed this with AI-writing tools, too. AI is good at completing your sentence or writing a few sentences based on well known concepts and topics that already exist today. It’s not yet good at helping you write content about new concepts or building on existing content.

It’s trained on the content of today and the past, which means all of the biases, stereotypes, and stigmatizing content that aren’t good today are also extrapolated into our future with AI.

I don’t have all the answers or solutions (I wish I did), but I want to flag this as a problem. We can’t expect AI to do better trained on what we have and do today, because what we do today (stigmatize, stereotype, and harm people living with chronic diseases) is not ok and not good enough.

We need to change today and train AI with different inputs in order to get different outputs.

That starts with us changing our behavior today. As I wrote a few days ago, please speak up when you see chronic diseases being used as a “joke” and when we see people being stereotyped or when we see racism occurring.

It’s hard, it’s uncomfortable – both to speak up, and to be corrected.

I’ve been corrected before, on verbal patterns and phrases I learned from society that I didn’t realize were harmful and stigmatizing to other people.

I’m working on learning to say “I’m sorry, you’re right, and let me learn from this” and trying to do better in the future, living up to my statement that I’m going to learn from that moment.

It can absolutely be done. It desperately needs to be done, by all of us.

We can course-correct, whether it’s in a one on one conversation, something we see in a small social network in social media, or even in a large room at a conference.

I still remember and appreciate greatly when I flagged that a diabetes joke was made at a conference on stage over four years ago. Upon hearing the joke, I noted that half the room laughed; and that it wasn’t ok. So I spoke up on Twitter, because I was live tweeting from the conference. I didn’t think much would come from it. But it did. Amazingly, it did.

John Wilbanks saw my tweet, realized it wasn’t ok, and instead of tweeting support or agreement (which also would have been great), took an amazing, colossally huge and unexpected step. He literally got up from his seat, went to the microphone, and interrupted the panel that had moved on to other topics. He called out the fact that diabetes was used as a joke a few minutes prior and that it wasn’t ok.

He put on a master class for how to speak up and how to use his power to intervene.

It was incredibly powerful because although the “joke” had gone over most people’s heads and they didn’t think it was a big deal, he brought attention to the fact that it had happened, was hurtful and harmful, and created a moment for reflection for the entire room of hundreds of people.

We need more of this.

When someone flags that they are being stereotyped, stigmatized, being discriminated against – we need to speak up. We need to support them.

It matters not just for today (although it matters incredibly much for today, too) but also for the future.

AI (artificial intelligence) learns from what we teach it, much like our children learn from what we teach and show them. I don’t have kids, but I know what I do and how I behave matters to my nieces and nephews and how they see the future.

We need to understand that AI is learning from what we are doing today, and what we do today matters. It should be enough to want to not be racist, discriminating, stereotyping, and harmful to other people today. But it’s not enough.

The loudest voices are often the ones establishing “normal” for our culture, our children, and the AI systems that may be running much of the world before our children graduate college. We need to speak up to help shape the conversation today, because  what we are doing today is teaching our children, our technology, and is what we’ll get in the future, ten-fold.

And I want the future to look different and be better, for all of us.

What do you see when you think of diabetes? And what are we teaching our children and our technology?