Running a Multi-Day Ultramarathon (Aiming for 200 Miles)

I used to make a lot of statements about things I thought I couldn’t do. I thought I couldn’t run overnight, so I couldn’t attempt to run 100 miles. I could never run 200 mile races the way other people did. Etc. Yet last year I found myself training for and attempting 100 miles (I chose to stop at 82, but successfully ran overnight and for 25 hours) and this year I found myself working through the excessive mental logistics and puzzle of determining that I could train for and attempt to run 200 miles, or as many miles as I could across 3-4 days.

Like my 100 mile attempt, I found some useful blog recaps and race reports of people’s official races they did for 200-ish mile races. However, like the 100 attempts, I found myself wanting more information for the mental training and logistical preparation people put into it. While my 200 mile training and prep anchored heavily on what I did before, this post describes more detail on how my training, prep, and ‘race’ experience for a multi-day or 200 mile ultra attempt.

DIY-ing a 200

For context, I have a previous post describing the myriad reasons of why I often choose to run DIY ultras, meaning I’m not signing up for an official race. Most of those reasons hold true for why I chose to DIY my 200. Like my 100 (82) miles, I mapped a route that was based on my home paved trail that takes me out and around the trails I’m familiar with. It has its downsides, but also the upsides: really good trail bathrooms and I feel safe running them. Plus, it’s easy and convenient for my husband to crew me. Since I expected this adventure to take 3-4 days (more on that below), that’s a heavy ask of my husband’s time and energy, so sticking with the easy routes that work for him is optimal, too. So while I also sought to run 200 miles just like any other 200-mile ultra runner, my course happens to have minimal elevation. Not all 200 mile ultramarathon races have a ton of elevation – some like the Cowboy 200 are pretty flat – so my experience is closer to that than the experience of those running mountain based ultras with 30,000 feet (or more) of elevation gain. And I’m ok with that!

Sleep

One of the puzzles I had to figure out to decide I could even attempt a 200 miler is sleep. With a 100 mile race, most people don’t sleep at all (nor did I) and we just run through the night. With 200 miles, that’s impossible, because it takes 3, 4, 5 days to finish and biologically you need sleep. Plus, I need more sleep than the average person. I’m a champion sleeper; I typically sleep much longer than everyone else; and I know I couldn’t function with an hour here or there like many people do at traditional races. So I actually designed my 200 mile ultra with this in mind: how could I cover 200 miles AND get sleep? Because I’m running to/from home, I have access to my kitchen, shower, and bed, so I decided that I would set up my run to run each day and come home and eat dinner, shower, and sleep each night for a short night in my bed.

I then decided that instead of winging it and running until I dropped before eating, showering, and sleeping, I would aim for running 50 miles each day. Then I’d come in, eat, shower, and sleep and get up the next morning and go again. 4 days, 3 nights, 50 miles each day: that would have me finishing around 87-90ish hours total (with the clock running from my initial start), including ~25 hours or more of total downtime between the eating/showering/sleeping/getting ready. That breakdown of 3.67 days is well within the typical finish times of many 200 mile ultras (yes, comparing to those with elevation gain), so it felt like it was both a stretch for me but also doable and in a sensible way that works for me and my needs. I mapped it all out in my spreadsheet, with the number of laps and my routes and pacing to finish 50 miles per day; the two times per day I would need my husband to come out and crew me at ‘aid station stops’ in between laps, and what time I would finish each night. I then factored in time to eat and shower and get ready for bed, sleep, and time to get up in the morning. Given the fact that I expected to run slower each day, the sleep windows go from 8 hours down to less than 6 hours by night 3. That being said, if I managed to sleep 5 hours per night and 15 hours total, that’s probably almost twice as much as most people get during traditional races!

Like sleep, I was also very cognizant of the fact that a 200 probably comes down to mental fortitude and will power to keep going; meticulous fueling; and excellent foot care. Plus reasonable training, of course.

Meticulous fueling

I have previously written about building and using a spreadsheet to track my fuel intake during ultras. This method works really well for me because after each training run I can see how much I consumed and any trends. I started to spot that as I got tired, I would tend to choose certain snacks that happened to be slightly lower calorie. Not by much, but the snack selections went from those that are 150-180 calories to 120-140 calories, in part because I perceived them to be both ‘smaller’ (less volume) and ‘easier to swallow’ when I was tired. Doubled up in the same hour, this meant that I started to have hours of 240 calories instead of more than 250. That doesn’t sound like much, but I need every calorie I can get.

I mapped out my estimated energy expenditure based on the 50 miles per day, and even consuming 250 calories per hour, I would end up with several thousand calories of deficit each day! I spent a lot of time testing food that I think I can eat for dinner on the 3 nights to ensure that I get a good 1000 calories or more in before going to bed, to help address and reduce the growing energy deficit. But I also ended up optimizing my race fuel, too. Because I ran so many long runs in training where I fueled every 30 minutes, and because I had been mapping out my snack list for each lap for 50 miles a day for 4 days, I’ve been aware for months that I would probably get food fatigue if I didn’t expand my fuel list. I worked really hard to test a bunch of new snacks and add them to the rotation. That really helped even in training, across all 12 laps (3 laps a day to get 50 miles, times 4 days), I carefully made sure I wouldn’t have too many repeats and get sick of one food or one group of things I planned to eat. I also recently realized that some of the smaller items (e.g. 120 calorie servings) could be increased. I’m already portioning out servings from a big bag into small baggies; in some cases adding one more pretzel or one more piece of candy (or more) would drive up the calories by 10-20 per serving. Those small tweaks I made to 5 of my ~18 possible snacks means that I added about 200 calories on top of what was already represented in those snacks. If I happen to choose those 5 snacks as part of my list for any one lap, that means I have a bonus 200 calories I’ve convinced myself to consume without it being a big deal, because it’s simply one more pretzel or one more piece of candy in the snack that I’m already use to consuming. (Again, because I’m DIYing my race and have specific needs relative to running with celiac, diabetes, and exocrine pancreatic insufficiency, for me, pre-planning my fuel and having it laid out in advance for every run, or in the race every single lap, is what works for me personally.)

Here’s a view of how I laid out my fuel. I had worked on a list of what I wanted for each lap, checking against repeats across the same day and making sure I wasn’t too heavily relying on any one snack throughout all the days. I then bagged up all snacks individually, then followed my list to lay them out by each lap and day accordingly. I also have a bag per day each for enzymes and electrolytes, which you’ll see on the left. Previously, I’ve done one bag per lap, but to reduce the number of things I’m pulling in and out of my vest each time, I decided I could do one big bag each per day (and that did end up working out well).

Two pictures side by side, with papers on the floor showing left to right laps 1-3 on the top and along the left side days 1-4, to create a grid to lay out my snacks. On the left picture, I have my enzymes, electrolytes per day and then a pile of snacks grouped for each lap. On the right, all the snacks and enzymes and electrolytes have been put into gallon bags, one for each lap.

Contingency planning

Like I did for my 100, I was (clearly) planning for as many possibilities as I could. I knew that during the run – and each evening after the run – I would have limited excess mental capacity for new ideas and brainstorming solutions when problems come up. The more I prepared for things that I knew were likely to happen – fatigue, sore body, blisters, chafing, dropping things, getting tired of eating, etc – the more likely that they would be small things and not big things that can contribute to ending a race attempt. This includes learning from my past 100 attempt and how I dealt with the rain. First of all, I planned to move my race if it looks like we’ll get 6 months of rain in a single 24 hour period! But also, I scheduled my race so that if I do have a few hours of really hard rain, I could choose to take a break and come in and eat/shower/change/rest and go back out later, or extend and finish a lap on the last day or the day after that. I was not running a race that would yank me from the course, but I did have a hard limit after day 5 based on a pre-planned doctor’s appointment that would be a hassle to reschedule, so I needed to finish by the night after day 5. But this gave me the flexibility to take breaks (that I wasn’t really planning to take but was prepared to if I needed to due to weather conditions).

Training for a 200 mile ultramarathon

Like training plans for marathons and 100 milers, the training plans I’ve read about for 200 mile ultramarathons intimidate me. So much mileage! So much time for a slow run/walker like me. I did try to look at sample 200 mile ultra plans and get a sense for what they’re trying to achieve – e.g. when do they peak their mileage before the race, how many back to back runs of what general length in terms of time etc – and then loosely keep that in mind.

But basically, I trained for this 200 mile ultra just like I trained for my marathon, 50k, 100k, and 82 miler. I like to end up doing long runs (which for me are run/walks of 30 seconds run, 60 seconds walk, just like I do shorter runs) of up to around 50k distance. This time, I did two total training runs that were each around 29 miles, just based on the length of the trail I had to run. I could have run longer, but mentally had the confidence that another ~45 minutes per run wasn’t going to change my ability to attempt 50 miles a day for 4 days. If I didn’t have 3 years of this training style under my personal belt, I might feel different about it. That’s longer than many people run, but I find the experience of 7-8 hours of time on my feet fueling, run/walking, and problem solving (including building up my willpower to spend that much time moving) to be what works for me.

The main difference for my 200 is probably also that it’s my 3rd year of ultrarunning. I was able to increase my long runs a little bit more of a time, when historically I used to add 2 miles a time to a long run. I jumped up 4 miles at a time – again, run/walking so very easy on my legs – when building up my long runs, so I was able to end up with 2 different 29 mile runs, two weeks apart, even though I really kicked off training specifically for this 8 weeks prior (10 weeks including taper) to the run. In between I also did a weekend of back to back to back runs (meaning 3 days in a row) where I ran 16 miles, another 16 miles, and 13 miles to practice getting up and running on tired legs. In past cycles I had done a lot more back to back (2-day) with a long and a medium run, but this time I did less of the 2-day and did the one big 3-day since I was targeting a 4-day experience. In future, if I were to do this again, given how well my body held up with all this training, I might have done more back to back, but I took things very cautiously and wanted to not overtrain and cause injury from ramping up too quickly.

As part of that (trying not to over do it), instead of doing several little runs throughout the week I focused on more medium-long runs with my vest and fueling, so I would do something like a long run (starting at 10 miles building up to 29 miles), a medium-long run (8 miles up to 13 miles or 16 miles) and another medium-ish run (usually 8 miles). Three runs a week, and that was it. Earlier in the 8 weeks, I was still doing a lot of hiking off the season, so I had plenty of other time-on-feet experiences. Later in the season I sometimes squeezed in a 4th short run of the week if we wouldn’t be hiking, and ran without my vest and tried to do some ‘speed work’ (aka run a little faster than my easy long run pace). Nothing fancy. Again, this is based on my slow running style (that’s actually a fixed interval of short run and short walk, usually 30 seconds run and 60 seconds walk), my schedule, my personality, and more. If you read this, don’t think my mileage or training style is the answer. But I did want to share what I did and that it generally worked for me.

I did struggle with wondering if I was training “enough”. But I never train “enough” compared to others’ marathon, 50k, 100k, 100 mile plans, either. I’m a low mileage-ish trainer overall, even though I do throw in a few longer runs than most people do. My peak training for marathon, 50k, and 100k is usually around low 50s (miles per week). Surprisingly, this 200 cycle did get me to some mid 60 mile weeks! One thing that also helped me mentally was adding in a rolling 7 day calculation of the miles, not just looking at miles per calendar week. That helped when I shifted some runs around due to scheduling, because I could see that I was still keeping a reasonable 55-low60s mileage over 7 days even though the calendar week total dropped to low 40s because of the way the runs happened to land in the calendar weeks.

Generally, though, looking back at how my training was more than I had accomplished for previous races; I feel better than ever (good fueling really helps!); I didn’t have any accidents or overtraining injuries or niggles; I decided a few weeks before peak that I was training enough and it was the right amount for me.

Another factor that was slightly different was how much hiking I had done this year. I ran my 100k in March then took some time off, promising my husband that we would hike “more” this year. That also coincided with me not really bouncing back from my 100k recovery period: I didn’t feel like doing much running, so we kept planning hiking adventures. Eventually I realized (because I was diagnosed with Graves’ disease last year, I’m having my thyroid and antibody and other related blood work done every 3 months while we work on getting everything into range) that this coincided with my TSH going too high for my body’s happiness; and my disinterest in long runs was actually a symptom (for me) of slightly too-high TSH. I changed my thyroid medication and within two weeks felt HUGELY more interested in long running, which is what coincided with reinvigorating my interest in a fall ultra, training, and ultimately deciding to go for the 200. But in the meantime, we kept hiking a lot – to the tune of over 225 miles hiked and over 53,000 feet of elevation gain! I never tracked elevation gain for hiking before (last year, not sure I retrospectively tracked it all but it was closer to 100 miles – so definitely likely 2x increase), but I can imagine this is definitely >2x above what I’ve done on my previous biggest hiking year, just given the sheer number of hikes that we went out on. So overall, the strengthening of my muscles from hiking helped, as did the time on feet. Before I kicked off my 8 week cycle, we were easily spending 3-4 hours a hike and usually at least two hikes a weekend, so I had a lot of time on feet almost every hike equivalent to 12 or more miles of running at that point. That really helped when I reintroduced long runs and aided my ability to jump my long run in distance by 4 miles at a time instead of more gently progressing it by 2 miles a week as I had done in the past.

How my 200 mile attempt actually went

Spoiler alert: I DNF (did not finish) 200 miles. Instead, I stopped – happily – at 100 miles. But it wasn’t for a lack of training.

Day 1 – 51 miles – All as planned

I set out on lap 1 on Day 1 as planned and on time, starting in the dark with a waist lamp at 6am. It was dark and just faintly cool, but warm enough (51F) that I didn’t bother with long sleeves because I knew I would warm up. (Instead, for all days, I was happy in shorts and a short sleeve shirt when the temps would range from 49F to 76F and back down again.) I only had to run for about an hour in the dark and the sky gradually brightened. It ended up being a cloudy, overcast and nice weather day so it didn’t get super bright first thing, but because it wasn’t wet and cold, it wasn’t annoying at all. I tried to start and stay at an easy pace, and was running slow enough (about ~30s/mile slower than my training paces) that I didn’t have to alter my planned intervals to slow me down any more. All was fairly well and as planned in the first lap. I stopped to use the bathroom at mile 3.5 and as planned at my 8 mile turnaround point, and also stopped to stuff a little more wool in a spot in my shoe a mile later. That added 2 minutes of time, but I didn’t let it bother me and still managed to finish lap 1 at about a 15:08 min/mi average pace, which was definitely faster than I had predicted. I used the bathroom again at the turnaround while my husband re-filled my hydration pack, then I stuffed the next round of snacks in my vest and took off. The bathroom and re-fueling “aid station” stop only took 5 minutes. Not bad! And on I went.

A background-less shot of me in my ultrarunning gear. I'm wearing a grey moisture-wicking visor; sunglasses; a purple ultrarunning vest packed with snacks in front and the blue tube of my hydration pack looped in front; a bright flourescent pink short sleeve shirt; grey shorts with pockets bulging on the side with my phone (left pocket) and skittles and headphones and keys (right pocket), and in this lap I was wearing bright pink shoes. Lap 2 was also pretty reasonable, although I was surprised by how often I wanted a bathroom. My period had started that morning (fun timing), and while I didn’t have a lot of flow, the signals my abdomen was giving my brain was telling me that I needed to go to the bathroom more often than I would have otherwise. That started to stress me out slightly, because I found myself wishing for a bathroom in the longest stretch without trail bathrooms and in a very populated area, the duration of which was about 5.5 miles long. I tried to drink less but was also aware of trying not to under hydrate or imbalance my electrolytes. I always get a little dehydrated during my period; and I was running a multi-day ultra where I needed a lot of hydration and more sodium than usual; this situation didn’t add up well! But I made it without any embarrassing moments on the trail. The second aid station again only took 5 minutes. (It really makes a world of difference to not have to dry off my feet, Desitin them up, and re-do socks and shoes every single aid station like I did last year!) I could have moved faster, but I was trying to not let small minutes of time frazzle me, and I was succeeding with being efficient but not rushed and continuing on my way. I had slowed down some during lap 2, however – dropping from a 15:08 to 15:20ish min/mi pace. Not much, but noticeable.

At sunset, with light blue sky fading to yellow at the horizon behind the row of tall, skinny bush like trees with gaps and a hot air balloon a hundred or so feet off the ground seen between the trees.Lap 3 I did feel more tired. I talked my husband into bringing me my headlamp toward the end of the last lap, instead of me having to carry it for 4+ hours before the sun went down. (Originally, I thought I would need it 2-3 hours into this last lap, but because I was moving so well it was now looking like 4 hours, and it would be a 2-3 mile e-bike ride for him to bring me the lamp when I wanted it. That was a mental win to not have to run with the lamp when I wasn’t using it!) I was still run/walking the same duration of intervals, but slowed down to about 16:01 pace for this lap. Overall, I would be at 15:40 average for the whole day, but the fatigue and my tired feet started to kick in on the third lap between miles 34-51. Plus, I stopped to take a LOT more pictures, because there was a hot air balloon growing in the distance as it was flying right toward me – and then by me next to the trail! It ended up landing next to the soccer fields a mile behind me after it passed me in this picture. I actually made it home right as the sun set and didn’t have to wear my lamp at all that evening.

Day 1 recovery was better and worse than I expected. I sat down and used my foot massager on my still-socked feet, which felt very good. I took a shower after I peeled my socks off and took a look at my feet for the first time. I had one blister that I didn’t know was growing at all pop about an hour before I finished, but it was under some of my pre-taped area. I decided to leave the tape and see how it looked and felt in the morning. I had 2-3 other tiny, not a big deal blisters that I would tape in the morning but didn’t need any attention that night.

I had planned to eat a reasonably sized dinner – preferably around 1000 calories – each night, to help me address my calorie deficit. And I had a big deficit: I had burned 5,447 calories and consumed 3,051 calories in my 13 hours and 13 minutes of running. But I could only eat ¼ of the pizza I planned for dinner, and that took a lot of work to force myself to eat. So I gave up, and went to bed with a 3,846 calorie deficit, which was bigger than I wanted.

And going to bed hurt. I was stiff, which I could deal with, but my feet that didn’t hurt much while running started SCREAMING at me. All over. They hurt so bad. Not blisters, just intense aches. Ouch! I started to doubt my ability to run the next day, but this is where my pre-planning kicked in (aided by my husband who had agreed to the rules we had decided upon): no matter what, I would get up in the morning, get dressed, and go out and start my first lap. If I decided to quit, I could, but I could not quit at night in bed or in the morning in the bed or in the house. I had to get up and go. So I went to sleep, less optimistic about my ability to finish 50 miles again on day 2, but willing to see what would happen.

Day 2: 34 instead of 50 miles, and walking my first ever lap

I actually woke up before my alarm went off on day 2. Because I had finished so efficiently the day before, I was able to again get a good night’s sleep, even with the early alarm and waking up again at 4:30am with plans to be going by 6am. The extra time was helpful, because I didn’t feel rushed as I got ready to go. I spent some extra time taping my new blisters. Because they hadn’t popped, I put small torn pieces of Kleenex against them and used cut strips of kinesio tape to protect the area. (Read “Fixing Your Feet” for other great ultra-related foot care tips; I learned about Kleenex from that book.) I also use lambs’ wool for areas that rub or might be getting hot spots, so I put wool back in my usual places (between big and second toes, and on the side of the foot) plus another toe that was rubbing but not blistered and could use some cushion. I also this year have been trying Tom’s blister powder in my socks, which seems to help since my feet are extra sweat prone, and I had pre-powdered a stack of socks so I could simply slip them on and get going once I had done the Kleenex/tape and wool setup. The one blister that had popped under my tape wasn’t hurting when I pressed on it, so I left it alone and just added loose wool for a little padding.

A pretty view of the trail with bright blue sky after the sun rose with green bushes (and the river out of sight) to the left, with the trail parallel to a high concrete wall of a road with cheery red and yellow leaved trees leaning over the trail.And off I went. I managed to run/walk from the start, and faster than I had projected on my spreadsheets originally and definitely faster than I thought was possible the night before or even before I started that morning. Sure, I was slower than the day before, but 15:40 min/mi pace was nothing to sneeze at, and I was feeling good. I was really surprised that my legs, hips and body did not hurt at all! My multi-day or back-to-back training seemed to pay off here. All was well for most of the first lap (17 miles again), but then the last 2 or so miles, my pace started dipping unexpectedly so I was doing 16+ min/mi without changing my easy effort. I was disappointed, and tired, when I came into my aid station turnaround. I again didn’t need foot care and spent less than 5 minutes here, but I told Scott as I left that I was going to walk for a while, because my feet had been hurting and they were getting worse. Not blisters: but the balls of my feet were feeling excruciating.

A close up of a yellow shelled snail against the paved trail that I saw while walking the world's slowest 17-mile lap on day 2.I headed out, and within a few minutes he had re-packed up and biked up to ride alongside me for a few minutes and chat. I told him I was probably going to need to walk this entire lap. We agreed this was fine and to be expected, and was in fact built into my schedule that I would slow down. I’ve never walked a full lap in an ultra before, so this would be novel to me. But then my feet got louder and louder and I told him I didn’t think I could even walk the full lap. We decided that I should take some Tylenol, because I wasn’t limping and this wouldn’t mask any pain that would be important cues for my body that I would be overriding, but simply muting the “ow this is a lot” screams that the bones in the balls of my feet were feeling. He biked home, grabbed some, and came back out. I took the Tylenol and sent him home again, walking on. Luckily, the Tylenol did kick in and it went from almost unbearable to manageable super-discomfort, so I continued walking. And walking. And walking. It took FOREVER, it felt like, having gone from 15-16 min/mi pace with 30 seconds of running, 60 seconds of walking, to doing 19-20 minute miles of pure walking. It was boring. I had podcasts, music, audiobooks galore, and I was still bored and uncomfortable and not loving this experience. I also was thinking about it on the way back about how I did not want to do a 3rd lap that day (to get me to my planned 50 miles) walking again.

Scott biked out early to meet me and bring me extra ice, because it was getting hot and I was an hour slower than the day before and risking running out of water that lap if he didn’t. After he refilled my hydration pack and brought it back to me while I walked on, I told him I wanted to be done for the day. He pointed out that when I finished this lap, I would be at 34 miles for the day, and combined with the day before (51), that put me at 85 miles, which would be a new distance PR for me since last year I had stopped at 82. That was true, and that would be a nice place to stop for the day. He reminded me of our ‘rules’ that I could go out the next day and do another lap to get me to 100, and decide during that lap what else I wanted to do. I was pretty sure I didn’t want to do more, but agreed I would decide the next day. So I walked home, completing lap 2 and 34 miles for the day, bringing me to 85 miles overall across 2 days.

Day 2 recovery went a little better, in part because I didn’t do 51 miles (only 34) and I had walked rather than ran the second lap, and also stopped earlier in the day (4pm instead of 7pm). I had more time to shower and bring myself to finally eat an entire 1000 calories before going to bed, again with my feet screaming at me. I had more blisters this time, mostly again on my right foot, but the balls of my feet and the bones of my feet ached in a way they never had before. This time, though, instead of setting my alarm to get up and go by 6am, I decided to sleep for longer, and go out a little later to start my first lap. This was a deviation from my plan, but another deviation I felt was the right one: I needed the sleep to help my body recover to be able to even attempt another lap.

Day 3: Only 16 miles, but hitting 100 for the first time ever

Instead of 6am, I set out on Day 3 around 8:30am. I would have taken even longer to go, but the forecast was for a warm day (we ended up hitting 81F) and I wanted to be done with the lap before the worst of the heat. I thought there was a 10% chance I’d keep going after this lap, but it was a pretty small chance. However, I set out for the planned 16 mile lap and was pleasantly surprised that I was run/walking at about a 15:40 pace! Again, better than I had projected (although yes, I had deviated from my mileage plan the day before), and it felt like a good affirmation that stopping the day before instead of slogging out another walking lap was the right thing to do.

After a first few miles, I toyed with the idea of continuing on. But I knew with the heat I probably wouldn’t stand more than one more lap, which would get me to 116. Even if I went out again the fourth day, and did 1-2 laps, that would MAYBE get me to 150, but I doubted I could do that without starting to cause some serious damage. And it honestly wasn’t feeling fun. I had enjoyed the first day, running in the dark, the fog, the daylight, and the twilight, seeing changing fall leaves and running through piles of them. The second day was also fun for the first lap, but the second lap walking was probably what a lot of ultra marathoners call the “death march” and just not fun. I didn’t want to keep going if it wasn’t fun, and I didn’t want to run myself into the ground (meaning to be so worn down that it would take weeks to months to recover) or into injury, especially when the specific milestones didn’t really mean anything. Sure, I wanted to be a 200 mile ultramarathoner, something that only a few thousand people have ever done – but I didn’t want to do it at the expense of my well-being. I spent a lot of time thinking about it, especially miles 4-8, and was thinking about the fact that the day before I had started, I had gone to a doctor’s appointment and had an official diagnosis confirming my fifth autoimmune disease, then proceeded to run (was running) 100 miles. Despite all the fun challenges of running with autoimmune conditions, I’m in really good health and fitness. My training this year went so well and I really enjoyed it. Most of this ultra had gone so well physically, and my legs and body weren’t hurting at all: the weakness was my feet. I didn’t think I could have trained any differently to address that, nor do I think I could change it moving forward. It’s honestly just hard to run that many hours or that many miles, as most ultramarathoners know, and your feet take a beating. Given that I was running on pavement for all of those hours, it can be even harder – or a different kind of hard – than kicking roots and rocks on a dirt trail. I figured I would metaphorically kick myself if I tried for 116 or 134 and injured myself in a way that would take 6-8 weeks to recover, whereas I felt pretty confident that if I stopped after this lap (at 100), I would have a relatively short and easy recovery, no major issues, and bounce back better than I ever have, despite it being my longest ever ultramarathon. Yes, I was doing it as a multi-day with sleep in between, but both in time on feet and in mileage, it was still the most I’d ever done in 2 or 3 days.

And, I was tired of eating. I was fueling SO well. Per my plans, I set out to do >500 mg of sodium per hour and >250 calories per hour. I had been nailing it every lap and every day! Day 1 I averaged 809 mg of sodium per hour and 290 calories per hour. Day 2 was even increased from that, averaging 934 mg of sodium per hour and 303 calories per hour! Given the decreased caloric burn of day 2 because I walked the second lap, my caloric deficit for day 2 was a mere ~882 calories (given that I also managed to eat a full dinner that night), even though I skipped the last hour as I finished the walking lap. Day 3 I was also fueling above my goals, but I was tired of it. Sooooo tired of it. Remember, I have to take a pill every time I eat, because I have exocrine pancreatic insufficiency (EPI or PEI). I was eating every 30 minutes as I ran or walked, so that meant swallowing at least one pill every 30 minutes. I had swallowed 57 pills on Day 1 and 48 pills on Day 2, between my enzymes and electrolyte pills. SO MANY PILLS. The idea of continuing to eat constantly every 30 minutes for another lap of ~5 or more hours was also not appealing. I knew if I didn’t eat, I couldn’t continue.

A chart with an hourly break down of sodium, calories, and carbs consumed per hour, plus totals of caloric consumption, burn, and calculated deficit across ~27 hours of move time to accomplish 100 miles run.

And so, I decided to stop after one more lap on day 3, even though I was holding up a respectable 15:41 min/mi pace throughout. I hit 100 miles and finished the lap at home, happy with my decision.

Two pictures of me leaning over after my run holding a sign (one reading 50 miles, one reading 100 miles) for each of my cats to sniff.(You can see from these two pictures that I smelled VERY interesting, sweaty and salty and exhausted at the end of day 1 and day 3, when I hit 50 miles and 100 miles, respectively. We have two twin kittens (now 3 years old) and one came out to sniff me first on the first day, and the other came out as I came home on the third day!)

Because I had only run one final lap (16 miles) on day 3, and had so many bonus hours in the rest of the day afterward when I was done and home, I was able to eat more and end up with only a 803 calorie deficit for the day. So overall, day 1 had the biggest deficit and probably influenced my fatigue and perception of pain on day 2, but because I had shortened day 2 and then day 3, my very high calorie intake every hour did a pretty good job matching my calorie expenditure, which is probably why I felt very little muscle fatigue in my body and had no significant sore areas other than the bottoms of my feet. I ended up averaging 821 mg/hr of sodium and 279 calories per hour (taking into account the fact that I skipped two final snacks at the end of day 2 when I was walking it out; ignoring that completely skipped hour would mean the average caloric intake on hours I ate anything at all was closer to 290 calories/hr!)

In total, I ended up consuming 124 pills in approximately 27 hours of move time across my 100 miles. (This doesn’t include enzyme pills for my breakfast or dinners each of those days, either – just the electrolyte and enzyme pills consumed while running!)

AFTERMATH

Recovery after day 3 was pretty similar to day 2, with me being able to eat more and limit my calorie deficit. I’ve had long ~30 mile training runs where I wasn’t very hungry afterward, but it surprised me that even two days after my ultra, I still haven’t really regained my appetite. I would have figured my almost 4000 calorie deficit from day 1 would drive a lot of hunger, so this surprised me.

So too has my physical state: 48 hours following the completion of my 100 miles, I am in *fantastic* shape compared to other multi-day back to back series of runs I’ve done, ultramarathons or not. The few blisters I got, mainly on my right foot, have already flattened themselves up and mostly vanished. I think I get more blisters on my right foot because of breaking my toe last year: my right foot now splays wider in my shoe, so it tends to get more blisters and cause more trouble than my left foot. I got only one blister on my left foot, which is still fluid filled but not painful and starting to visibly deflate now that I’m not rubbing it onto a shoe constantly any more. And my legs don’t feel like I ran at all, let alone running 51+34+16 miles!

I am tired, though. I don’t have brain fog, probably because of my excellent fueling, but I am fatigued in terms of overall energy and lack of motivation to get a lot done yesterday and today (other than writing this blog post!). So that’s probably pretty on par with my effort expended and matches what I expected, but it’s nice to be able to move around without hurting (other than my feet).

My feet in terms of general aches and ows are what came out the worst from my run. Day 2, what hurt was the bottom of the balls of my feet. Starting each night though, I was getting aches all over in all of the bones of my feet. After day 3, that night the foot aches were particularly strong, and I took some Tylenol to help with that. Yesterday evening and today though, the ache has settled down to very minor and only occasionally noticeable. The tendon from the top of my left foot up my ankle is sore and gets cranky when I wear my sneakers (although it didn’t bother me at all while running any of the days), so after tying and re-tying my shoelaces 18 times yesterday to try to find the perfect fit for my left foot, today I went on my recovery walk in flip flops and was much happier.

What I’m taking away from this 200 mile attempt that was only 100 miles:

I feel a little disappointed that I didn’t get anywhere near 200 miles, but obviously, I was not willing to hurt long enough or hard enough to get there. My husband called it a stretch goal. Rationally, I am very happy with my choices to stop at 100 and end up in the fantastic physical shape that I am in, and I recognize that I made a very rational choice and tradeoff between ending in good shape (and health) and the mainly ego-driven benefits of possibly achieving 200 miles (for me).

Would I do anything different? I can’t think of anything. If I somehow had an alternate do-over, I can’t think of anything I would think to change. I’d like to reduce my risk of blisters but I’m already doing all I can there, and dealing with changes in my right foot shape post-broken toe that I have no control over. And I’m not sure how to train more/better for reducing the bottom ball of foot pain that I got: I already trained multiple days, back to back, long hours of feet on pavement. It’s possible that having my doctor’s appointment the day before I started influenced my mental calculation of my future risk/benefit tradeoff of continuing more miles, and so not having had that then may have changed my calculations to do another lap or two, or go out on the 4th day (which I did not). But, I don’t have a do over, and I’ll never know, and I’m not too upset about that because I was able to control what I could control and am again pretty happy with the outcomes. 100 or 150 miles felt about the same to me, psychologically, in terms of satisfaction.

What I would tell other people about attempting multiple day ultramarathons or 200 mile ultramarathons:

Training back to back days is one option, as is long spurts of time on feet walking/hiking/running. I don’t think “just running” has to be the only way to train for these things. I’m also a big proponent of short intervals: If you hear people recommend taking walk breaks, it doesn’t have to be 1 minute every 10 minutes or every mile. It can be as short as every 30 seconds of running, take a walk break! There’s no wrong way to do it, whatever makes your body and brain happy. I get bored running longer (and don’t like it); other people get bored running the short intervals that I do – so find what works for you and what you’re actually willing to do.

Having plans for how you’ll rest X hours and go out and try to make it another lap or to the next aid station works really well, especially if you have crew/pacers/support (for me, my husband) who will stick to those rules and help you get back out there to try the next lap/section. Speaking of sleep/rest, laying down for a while helps as much as sleeping, so even if you can’t sleep, committing to the rest of X hours is also good for resting your feet and everything. I found that the hour laying down before I fell asleep helped my body process the noise of the “ouch” from my feet and it was a lot easier to sleep after that. Plan that you’ll have some down/up time before and after your sleep/rest time, and figure that into your time plans accordingly.

The cheesy “know your why” and “know what you want” recommendations do help. I didn’t want 200 miles badly enough to hurt more for longer and risk months of recovery (or the inability to recover). Maybe you’d be lucky enough to achieve 200 without hurting that bad, that long, or risking injury – or maybe you’ll have to make that choice, and you might make it differently than I did. (Maybe you’re lucky enough to not have 5 autoimmune things to juggle! I hope you don’t have to!) I kind of knew going in that I was only going to hit 200 if all went perfect.

Diabetes and this 200 mile ultramarathon that was a 100 mile ultra:

I just realized that I managed to write an ENTIRE race report without talking about diabetes and glucose management…because I had zero diabetes-related thoughts or issues during these several days of my run! Sweet! (Pun fully intended.)

Remember, I have type 1 diabetes and use an open source automated insulin delivery (AID) system (in my case, still using OpenAPS after alllllll these years), and I’ve talked previously about how I fuel while ultrarunning and juggling blood glucose management. Unlike previous ultras, I had zero pump site malfunctions (phew) and my glucose stayed nicely in range throughout. I think I had one small drift above range for 2 hours due to an hour of higher carb activity right when I shifted to walking the second lap on day 2, but otherwise was nicely in range all days and all nights without any extra thought or energy expended. I didn’t have to take a single “low carb”/hypoglycemia treatment! I think there was one snack I took a few minutes early when I saw I was drifting down slightly, but that was mostly a convenience thing and I probably would not have gone low (below target) even if I had waited for my planned fuel interval. But out of 46 snacks, only one 5-10 minutes early is impressive to me.

I had no issues after each day’s run, either: OpenAPS seamlessly adjusted to the increasing insulin sensitivity (using “autosensitivity” or “autosens”) so I didn’t have to do manual profile shifts or overrides or any manual interference. I did decide each night whether I wanted to let it SMB (supermicrobolus) as usual or stick to temp basal only to reduce the risk of hypoglycemia, but I had no post-dinner or overnight lows at all.

The most “work” I had to do was deciding to wear a second CGM sensor (staggered, 5 days after my other one started) so that I had a CGM sensor session going with good quality data that I could fall back to if my other sensor started to get jumpy, because the sensor session was supposed to end the night of day 4 of my planned run. I obviously didn’t run day 4, but even so I was glad to have another sensor going (worth the cost of overlapping my sensors) in order to have the reassurance of constant data if the first one died or fell out and I could seamlessly switch to an already-warmed up sensor with good data. I didn’t need it, but I was glad to have done that in prep.

(Because I didn’t talk about diabetes a lot in this post, because it was not very relevant to my experiences here, you might want to check out my previous race recaps and posts about utlrarunning like this one where I talk in more detail about balancing fueling, insulin, and glucose management while running for zillions of hours.)

TLDR: I ran 100 miles, and I did it my DIY way: my own course, my own (slow pace), with sleep breaks, a lot of fueling, and a lot of satisfaction of setting big goals and attempting to achieve them. I think for me, the process goals of figuring out how to even safely attempt ultramarathons are even more rewarding than the mileage milestones of ultrarunning.

Running a multi-day ultramarathon by Dana M. Lewis from DIYPS.org

How I PRed My 100k Time

I’ve been training for a big goal of mine: running a 100k in a specific amount of time. Yes, I’ve run farther than that before: last year I ran ~82 miles. However, I had someone in my family network who ran 100k last year, and I realized their time made a reasonable goal for me. I’m competitive, so the extra motivation of striving for a certain time is helpful for channeling my “racing”, even if I’m “racing” someone virtually (who ran a year ago!).

Like last year, I decided I would run my 100k (which is 62+ miles) as a solo or DIY ultramarathon. I originally plotted five laps of various lengths, then figured out I could slightly alter my longest route by almost a mile, making it so I would do 2 laps of the same length, a third lap of my original longest length, and then a fourth lap of a shorter length that’s also one of my preferred running routes. Only four laps would be mentally easier than doing five laps, even though it would end up being exactly the same distance. Like last year, I leveraged extensive planning (most of it done last year) to plan my electrolytes, enzymes, and fueling in advance. I had a lot less work to do this year, because I simply refreshed the list of gear and prep work from last year, shortened of course to match the length of my expected race (less than 18 hours vs ~24+ hours). The main thing I changed in terms of preparation is that while I set out a few “just in case” supplies, most of them I left in their places, figuring they’d be easy enough to find in the house by Scott (my husband) if I needed to ask him to bring out anything in particular. The few things I laid out were emergency medical supplies like inhaled insulin, inhaled glucagon, a backup pump site, etc. And my usual piles of supplies – clothes, fuel to refill my vest, etc – for each lap.

My 100k run supplies set out on the floor. I have a bag of OTC enzymes (for exocrine pancreatic insufficiency), 8-10 individually packaged snacks ranging from Fritos to yogurt pretzels to sandwich cookies, cashews, and beef sticks, a bag of electrolyte pills, and eye drops and disposable tooth brushes. Each lap (4 total) has a set of each of these.

One thing that was different for my 100k was my training. Last year, I was coming back from a broken toe and focused on rebuilding my feet. I found that I needed to stick with three runs per week. This year, I was back up to 4-5 runs per week and building up my long runs beginning in January, but in early February I felt like my left shin was getting niggle-y and I backed down to 3 runs a week. Plus, I was also more active on the weekends, including most weekends where we were cross-country skiing twice, often covering 10-15 miles between two days of skiing, so I was getting 3+ extra hours of “time on legs”, albeit differently than running. Instead of just keeping one longer run, a medium run, and two shorter runs (my original plan), I shifted to one long run, one medium long run (originally 8 and then jumping to 13 miles because it matched my favorite route), and the big difference was making my third run about 8 miles, too. This meant that I carried my vest and fueled for all three runs, rather than just one or two runs per week. I think the extra time training with the weight of my vest paid off, and the miles I didn’t do or the days I didn’t run didn’t seem to make a difference in regard to recovering during the weeks of training or for the big run itself. Plus, I practiced fueling every week for every run.

I also tapered differently. Once I switched to three runs a week, my shin felt a lot better. However, in addition to cross country skiing, Scott and I also have access now to an outdoor rock climbing wall (so fun!) and have been doing that. It’s a different type of workout and also helps with full body and upper body strength, while being fun and not feeling like a workout. I bring it up mostly because three weeks ago, I think I hurt the inside of my hip socket somehow by pressing off a foothold at a weird angle, and my hip started to be painful. It was mostly ok running, but I backed off my running schedule and did fewer miles for a week. The following week I was supposed to do my last longest long run – but I felt like it wouldn’t be ideal to do with my hip still feeling intermittently sore. Sometimes it felt uncomfortable running, other times it didn’t, but it didn’t feel fully back to normal. I decided to skip the last long run and stick with a week of my medium run length (I did 13, 13, and 8). That felt mostly good, and it occurred to me that two shorter weeks in a row were essentially a taper. If I didn’t feel like one more super long run (originally somewhere just under a 50k) was necessary to prepare, then I might as well consider moving my ‘race’ up. This is a big benefit of DIY’ing it, being able to adjust to injury or schedule – or the weather! The weather was also forecasted to be REALLY nice – no rain, high 50s F, and so I tentatively aimed to do a few short runs the following week with my 100k on the best weather day of the weekend. Or if the weather didn’t work out, I could push it out another week and stick with my original plan.

My taper continued to evolve, with me running 4 easy miles on Monday (without my vest) to see how my hip felt. Mostly better, but it still occasionally niggled when walking or running, which made me nervous. I discussed this endlessly with Scott, who as usual thought I was overcomplicating it and that I didn’t need to run more that week before my 100k. I didn’t like the idea of running Monday, then not running again until (Friday-Sunday, whenever it ended up being), but a friend unexpectedly was in town and free on Wednesday morning, so I went for a walk outside with her and that made it easy to choose not to run! It was going to be what it was going to be, and my hip would either let me run 100k or it would let me know to make it a regular long run day and I could stop at any time.

So – my training wasn’t ideal (shifting down to 3 runs a week) and my taper was very unexpected and evolved differently than it usually does, but listening to my body avoided major injury and I woke up feeling excited and with a good weather forecast for Friday morning, so I set off at 6am for my 100k.

(Why 6am start, if I was DIYing? My goal was to finish by 11:45pm, to beat the goal time of 11:46pm, which would have been 17 hours and 46 minutes. I could start later but that would involve more hours of running at night and keeping Scott awake longer, so I traded for an hour of running before it got light and finishing around midnight for a closer to normal bedtime for us both.)

*One other major thing I did to prep was that as soon as I identified that I wanted to shift my race up a week, I went in and started scheduling my bedtimes, beginning with the night before the race. If I raced at 6 from home, I would wake up at 5 to get ready, so I wanted to be sleeping by 9pm at the latest in order to get close to a normal night of sleep. Ideally it would be closer to 8-8:30. I set my bed time and each night prior, marked the bedtime 15 minutes later, so that when I started I was trying to push my bedtime from ~11pm to 10:45 pm then the next night 10:30pm etc. It wasn’t always super precise – I’ve done a better job achieving the goal bedtimes previously, but given that I did an early morning cross country ski race on the morning of daylight saving time the week before (ouch), it went pretty ok, and I woke up at 5am on race morning feeling rested and better than I usually do on race days. 7 hours and 45 minutes of sleep is an hour to an hour and a half less than usual, but it’s a LOT better than the 4-5 hours of sleep I might have otherwise gotten without shifting my schedule.

THE START (MILES 0-17)

My ultra running experience checklist, to highlight the good and the less good as I run. This shows that I saw stars, bunnies, and a loon and a pheasant, but did not see my usual eagles, heron, or heard any ducks splashing in the river at night.I set out at 6am, It was 33 degrees (F), so I wore shorts and a short sleeve shirt, with a pair of fleece lined pants over my shorts and a long sleeve shirt, rain jacket, ear cover, and gloves on my hand. It was dry, which helped. I was the only one out on the trail in the dark, and I had a really bright waist lamp and was running on a paved trail, so I didn’t have issues seeing or running. I felt a bit chilly but within 3 minutes could tell I would be fine temperature wise. As I got on the trail, I glanced up and grinned – the stars were out! That meant I could “check” something off my experience list at the very start. (I make a list of positive and less great experiences to ‘check off’ mentally, everything from seeing the stars or seeing bunnies or other wildlife to things like blisters, chafing, or being cold or tired or having out of whack glucose levels – to help me process and “check them off” my list and move on after problem solving, rather than dwelling on them and getting myself into a negative mood). The other thing I chuckled about at the start was passing the point where, about a half mile in to my 82 miles, I had popped the bite valve off of my hydration hose and gotten water everywhere and couldn’t find the bite valve for 3 minutes. That didn’t happen this time, phew! So this run was already off to a great start, just by nothing wild like that happening within the first few minutes. I peeled off my ear cover at 0.75 miles and my gloves at a mile. My jacket then peeled off to tie around my waist by the second mile, and I was surprised when my alarm went off at 6:30am reminding me to take in my first fuel. My plan calls for fuel every 30 minutes, which is why I like starting at the top of the hour (e.g. 6:00am) so I can use the alarm function on my phone to have alarms pre-set for the clock times when I need to fuel. Morning-sunrise-during-100kAs I continued my run/walk, just like I do in all my training runs, I pulled my enzymes out of my left pocket, swallowed them, put them away, grabbed my fuel out of my right pocket (starting with chili cheese Fritos), then also entered it into my fuel tracking spreadsheet so I could keep an eye on rolling calorie and sodium consumption throughout my run. (Plus, Scott can also see it and keep an eye on it as an extra data point that I’m doing well and following all planned activities, as well as having live GPS tracking and glucose tracking capabilities). I carried on, and as the sky began to lighten, I could see frost covering the ground beside the trail – brrr! It actually felt a little bit colder as the sun rose, and I could see wafts of fog rolling along the river. I started to see more people out for early morning runs, and I checked my usual irritation at people who were likely only out for (3? 5? 10? Psh!) short morning runs while I was just beginning an all day slog.

PheasantI was running well and a little ahead of my expected pace, closer to my usual long run/walk paces (which have been around 14:30-14:50 min/mi lately). I was concerned it was too fast and I would burn out as so many people do, but I did have wiggle room in my paces and had planned for an eventual slow down regardless. I made it to the first turnaround, used the trail bathroom there, and continued on, noting that even with the bathroom stop factored in, I was still on or ahead of schedule. I texted Scott to let him know to check my paces earlier than he might otherwise, and also stopped in my tracks to take a picture of a quail-like bird (which Scott thinks was a pheasant) that I’d never seen before. Lap 1 continued well, and I was feeling good and maintaining an overall sub-15 pace while I had been planning for a 15:10/ish average pace, so although Scott told me he didn’t need me to warn him about being particular miles away for aid station stops, I saw he was still at home by the time I was less than a mile out, and texted him. He was finishing a work call and had to rush to finish packing and come meet me. It wouldn’t have been a big deal if he had “missed” me at the expected turnaround spot, because there’s other benches and places where we could have met after that, but I think he was still stressed out (sorry!) about it, although I wasn’t. However, he biked up to me right at the turnaround spot, grabbed my vest and headed back to our normal table for refueling, while I used the bathroom and then headed out to meet him.

The other thing that might have stressed him out a little – and did stress me out a little bit – was my glucose levels. They were running normal levels for me during a run, around ~150mg/dL in the first 2-3 hours of my run. This is higher than I normally like to be for non-running times but is reasonable for long runs. I usually run a bit higher at the start and then settle in around 120-130mg/dL, because the risk of having too much insulin at the start from breakfast is prone to causing lows in the first hour; therefore I let myself reduce insulin prior to the run so that the first hour or so runs higher. However, instead of coming down as usual from the start of my run, I started a steady rise from 150 to 180. That was weird, but maybe it was a physiological response to the stress? I issued a correction, but I kept rising. I crossed 200 when I should have been beginning to flatten, and it kept going. What on earth? I idly passed my hand over my abdomen to check my pump site, and couldn’t feel my pump site. It had come unclipped!!! This was super frustrating, because it means I didn’t know how much insulin was in my body or when it had come unclipped. (Noteworthy that in 20+ years of using an insulin pump, this has NEVER happened before until this month, and it has now happened twice, so I need to record the batch/lot numbers and report it – this batch of sites is easily coming unclipped with a tug on the tubing, which is clearly dangerous because you can’t feel it come unclipped and don’t know until you see rising glucose levels.) “Luckily” though, this was when I was within 30 minutes or so of being back to Scott, so I texted him and told him to grab the inhaled insulin baggie I had set out, and I would use that at the aid station to more quickly get my body back into a good state (both in terms of feeling the insulin action as well as normalizing glucose levels more quickly. For those who don’t know, injected/pump insulin takes ~45 minutes to peak activity in the body, whereas inhaled insulin is much faster in the ballpark of ~15-20 minutes peak action, so in situations like this I prefer to, when possible, use inhaled insulin to normalize how my body is feeling while also resuming/fixing the pump site for normal insulin from then on).

As planned, at every aid station stop he brought water and ice to refill my camelback, which he did while I was at the bathroom. When I came up to the table where he was, I quickly did some inhaled insulin. Then I sat down and took off my socks and shoes and inspected my feet. My right foot felt like it had been rubbing on the outside slightly, so I added a piece of kinesiology tape to the outer edge of my foot. I already had pieces on the bottom of my feet to help prevent blisters like I got during my 82, and those seemed to be working, and it was quick and easy to add a straight piece of tape, re-stick pieces of lamb’s wool next to each big toe (to prevent blisters there), put fresh socks on, and put a fresh pair of shoes on. I also changed my shirts. It was now 44 F and it was supposed to warm up to 61 F by the end of this next lap. I stood up to put my pack on again and realized I had forgotten to peel off my pants! Argh. I had to unlace my shoes again, which was the most annoying part of my stop. I peeled off the pants (still wearing my shorts under), put my shoes back on and laced them again, then put my vest back on. I removed the remaining trash from my vest pockets, pulled out the old enzyme and electrolyte baggies, and began to put the new fuel supply and enzyme and electrolyte supply in the front vest pockets. Last time for my 82, I had Scott do the refilling of my vest, but this time I just had him set out my gallon bag that contained all of these, so that I could place the snacks how I like best and also have an idea of what I had for that lap. I would need to double check that I had enzymes and electrolytes, anyway, so it ended up being easier for me to do this and I think I’ll keep doing this moving forward. Oh, and at each aid station stop we popped my (non-ultra) Apple Watch on a watch charger to top off the charge, too. I also swapped in a new mini battery to my pack to help keep my phone battery up, and then took off. All this, including the bathroom time, took about 15 minutes! I had budgeted 20 minutes for each stop, and I was pleased that this first stop was ahead of schedule in addition to my running slightly ahead of schedule, because that gave me extra buffer if I slowed down later.

A 24 hour view of my CGM graph to show my glucose levels before (overnight), during the run including marks where my pump site likely unclipped, where I reclipped it, and how my glucose was in range for the remainder of the run.
A 24 hour view of my CGM graph to show my glucose levels before (overnight), during the run including marks where my pump site likely unclipped, where I reclipped it, and how my glucose was in range for the remainder of the run.

LAP 2 (MILES 18-34)

The next lap was the same route as the first, and felt like a normal long run day. It was mid 40s and gradually warmed up to 63 F and actually felt hot for the second half! It hadn’t been 60+ degrees in Seattle since October (!) so my body wasn’t used to the “heat”. I was still feeling good physically and running well – in fact, I was running only ~10s slower than my average pace from lap 1! If I kept this up and didn’t fall off the pace much in the second lap, I would have a very nice buffer for the end of the race. I focused on this lap and only thought about these 16-17 miles. I did begin to squirt water from my camelback on to the ‘cooling’ visor I have, which evaporates and helps your head feel cooler – especially since I wasn’t used to the heat and was sweating more, that felt good. The end of the second lap, I started to feel like I was slightly under my ideal sodium levels. I’m pretty sensitive to sodium; I also drink a lot (I was carrying 3-3.5L for every 17 mile lap!); and I’m a salty sweater. Add increased heat, and even though I was right on track with my goal of about ~500mg/hour of sodium intake between my fuel and additional electrolyte pills, I felt a bit under, and so the next while I added an extra electrolyte pill to increase my sodium intake, and the feeling went away as expected.

(My glucose levels had come back down nicely within the first few miles of this lap, dipped down but as I was fueling every 30 minutes, came nicely into range and stayed 100% in range with no issues for the next ~12 hours of the run!)

This time, Scott was aware that I was ahead of expected paces and had been mapping my paces. He told me that if I stayed at that pace for the lap, I would be able to slow down to a 16 min/mi pace for lap 3 (16 miles) and down further to a 17 min/mi pace for the last (almost 13 miles) lap and still beat my goal time. That sounded good to me! He ended up biking out early to meet me so he could start charging my watch a few minutes early, and I ended up taking one of my next snacks – a warmed up frozen waffle – for my ‘last’ snack of the lap because it was time for a snack and there was no reason to wait even though it was part of the ‘next’ lap’s fuel plan. So I got to eat a warm waffle, which was nice!

Once we got almost there, Scott took my vest and biked ahead to begin the camelback process. I hit the turnaround, made another quick bathroom stop, and ran over to the table. This time, since it was 60s and I would finish my next lap while it was still above 50 degrees and light, I left my clothing layers as-is, other than a quick shirt switch to get rid of my sweaty shirt. I decided not to undo my shoes and check my feet for blisters; they felt fine and good. Because I didn’t need a shoe change or have anything going on to troubleshoot, I was in and out in 5 minutes! Hooray, that gave me another 10 minute buffer (in addition to 5 before, plus all my running ahead of schedule). I took off for lap 3, but warned Scott I would probably be slowing down.

LAP 3 (MILES 35-50)

The third lap was almost the same route, but shorter by a little less than a mile. I was originally concerned, depending on how much I had slowed down, that I would finish either right around sunset or after sunset, so that Scott might need to bring me out a long sleeve shirt and my waist lamp. However, I was ahead of schedule, so I didn’t worry about it, and again set out trying to not fall off my paces too much. I slowed down only a tiny bit on the way out, and was surprised at the turnaround point that I was now only slightly above a 15 min/mi pace! The last few miles I felt like slowing down more, but I was motivated by two thoughts: one was that I would finish this lap and essentially be at 50 miles. This meant, given my excellent pacing, that I would be “PR”ing my 50 mile pace. I’ve not run a standalone 50 miles before, just as part of my 82 mile when I wasn’t paying attention to pace at all (and ran 2-3 min/mi slower as a result), so I was focused on holding my effort level to be close to the same. Plus, after this lap, I “only” had a ~13 mile single lap left. That was my usual route, so it would be mentally easier, and it’s my last lap, so I knew I would get a mental boost from that. Psychologically, having the 50 mile mark to PR here really helped me hold my pace! I ended up only slowing down ~13s average pace compared to the ~10s deterioration between laps 1 and 2. I was pretty pleased with that, especially with hitting 50 miles then!

At this aid station stop, I was pretty cheerful even though I kept telling Scott I would be slowing down. I took ~10 minutes at this stop because I had to put my jacket back on around my waist and put my double headlamp on (which I wear around my waist) for when it got dark, plus do the normal refueling. I changed my short sleeve shirt again so I had a dry shirt, and debated but went ahead and put my fresh long sleeve shirt on and rolled up the sleeves. I figured I’d be putting it on as soon as it got dark, and I didn’t want to have to hassle with getting my vest on and off (while moving) in order to get the shirt on, especially because I’d also have to do that with my jacket later, so I went with the long sleeve shirt on and rolled up the sleeves for now. I had originally planned to put my long pants back on over my shorts, but it was still 63 degrees and the forecast was only going to get down to 45 degrees by midnight, and I seemed ahead of schedule and should finish by then. If I did get really cold, Scott could always bike out early and bring me more layers, but even 45 degrees in the dark with long sleeves, jacket, ear cover, and two pairs of gloves should be fine, so I went without the pants.

Speaking of ahead of schedule, I was! I had 5 minutes from the first aid station, 15 minutes from the second aid station, 5 minutes from this last aid station…plus another ~15 minutes ahead of what I thought my running time would have been at this point. Woohoo!

LAP 4 (MILES 51-63)

However, as soon as I walked off with my restocked vest, I immediately felt incredibly sore thighs. Ouch! My feet also started complaining suddenly. I did an extra walk interval and resumed my run/walking and my first mile out of the aid station stop was possibly my slowest mile (barring any with a bathroom stop) for the entire race, which is funny, because it was only about a 16:30 pace. But I figured it would be downhill from there and I’d be lucky to hold a sub 17 pace for these last 13 miles, especially because most of them would be in the dark and I naturally move a bit slower in the dark. Luckily, I was so far ahead that I knew that even a 17 min/mi average pace (or even slower) would be fine. However, I had joked to Scott coming into the end of lap 3 that I was tempted to just walk lap 4 (because I was finally starting to be tired) but then I’d have to eat more snacks, because I’d be out there longer. Sounds funny, but it was true – I was eating ok but occasionally I was having trouble swallowing my enzyme pills. Which is completely reasonable, I had been swallowing dozens of those (and electrolyte pills) all day and putting food down my throat for ~12+ hours consistently. It wasn’t the action of swallowing that was a problem, but I seemed to be occasionally mistiming how I would get the pills washed to the back of my mouth at the top of my throat to be able to swallow them down. Once or twice I had to take in some extra water, so it really wasn’t a big deal, but it was a slight concern that if I stopped being able to enzyme, I couldn’t fuel (because I have EPI) and I’d either have to tough it out without fueling (bad idea) or stop (not a fun idea). So I had that little extra motivation to try to keep run/walking!

Luckily, that first mile of the last lap was the worst. My thighs were still sore but less so and my feet stopped yelling at me and were back to normal. I resumed a reasonable run/walk pace, albeit at closer to a 15:30+ pace, which was a bigger jump from my previous lap average pace. I didn’t let it stress me out, but I was wishing I felt like fighting harder. But I didn’t, and focused on holding that effort level. I texted Scott, telling him I was averaging sub-16 pace (barely) at miles 4 and 5, then asking him to check my assumption that if I didn’t completely walk it in, I could maybe be an hour ahead of schedule? He confirmed that I “only” needed 16:53 average pace for the lap to come in at 10:30pm (75 minutes ahead of goal) and that if I kept sub-16 I could come in around 10:19pm. Hmmm, that was nice to hear! I didn’t think I would keep sub-16 because it was getting dark and I was tired, ~55 miles into the run, but I was pretty sure I’d be able to be sub 17 and likely sub 16:53! I carried on, turning my light on as it got dark. I was happily distracted by checking happy experiences off my mental list, mostly seeing bunnies beside and darting across the trail in the dark!

I hit the almost-halfway mileage point of the last lap, but even though it wasn’t halfway in mileage it felt like the last big milestone – it was the last mini-hill I had to climb to cross a bridge to loop around back to finish the lap. Hooray! I texted Scott and told him I coudn’t believe that, with ~7 miles left, I would be done in <2 hours. It was starting to sink in that I’d probably beat my goal of 11:45 and not doubt that it was real, and that I’d beat it by more than a few minutes. I then couldn’t resist – and was also worried Scott wouldn’t realize how well I was moving and be prone to coming out too late – and texted him again when I was <5 miles out and then 4 miles out. But by the time I was at 3 miles, he replied to ask if I needed anything else other than the bag I had planned for him to bring to the finish. Nope, I said.

At that point, I was back on my home turf, as I think about the last 2-3 miles that I run or walk on most days of the week. And I had run these miles 3 times already (in each direction, too), but it was pretty joyful getting to the point where I know not only every half mile marker but every tenth of a mile. And when I came up under the last bridge and saw a bright light biking toward me, it was Scott! He made it out to the 1.75 mile mark and rode in with me, which was fun. I was still holding just under sub-16 pace, too. I naturally pick up the pace when he’s biking with me – even when I’ve run 60+ miles! – and I was thinking that I’d be close but a few minutes under an hour and a half of schedule. It didn’t really matter exactly, but I like even numbers, yet I didn’t feel like I had tons of energy to push hard to the end – I was pleased enough to still be moving at a reasonable speed at this point!

Finally, about a half mile out, Scott biked ahead to set up the finish for me. (Purple painter’s tape and a sign I had made!) I glanced at my watch as I rounded the last corner, about .1 mile away, and though “oh, I was so close to beating the goal by over an hour and a half, too bad I didn’t push harder a few minutes ago so I could come in by 10:16 and be an hour and a half ahead”. I ran a tiny bit more but didn’t have much speed, walked a few last steps, then ran the rest of the way so Scott could video me coming into the finish. I could see the light from his bike’s light glowing on the trail, and as I turned the corner to the finish I was almost blinded by his waist light and his head lamp. I ran through the finish tape and grinned. I did it! He stopped videoing and told me to stop my trackers. I did but told him it didn’t matter, because I was somewhere under an hour and a half. We took a still picture, then picked up my tape and got ready to head home. I had done it! I had run 100k, beat my goal time…and it turns out I DID beat it by over an hour and a half! We checked the timestamp on the video Scott took of the finish and it has me crossing at 10:16pm, so that makes it a 16 hour and 16 minute finish – woohoo!

A picture at night in the dark with me running, light at my waist, toward the purple painter tape stretched out as my finish line.

My last lap ended up being ~37 seconds average pace slower, so I had :10, :13, and :37 differences between the laps. Not too bad for that distance! I think I could’ve pushed a little harder, but I honestly didn’t feel like it psychologically, since I was already exceeding all of my goals, and I was enjoying focusing on the process meta-goals of trying to keep steady efforts and paces. Overall, my average pace was 15:36 min/mi which included ~30 min of aid station stops; and my average moving pace (excluding those 30 minutes of aid station time but did include probably another ~8-10 min of bathroom stops) was 15:17 min/mi. I’m pleased with that!

FUN STATS

A pivot table with conditional formatting showing when my sodium, calories, and carbs per hour met my hourly goal amounts.One of the things I do for all training runs but also races is input my fueling as I go, because it helps me make sure I’m actually fueling and spot any problems as they start to develop. As I mentioned, at one point I felt a tiny bit low on sodium and sure enough, I had dipped slightly below 500mg/hr in the two hottest hours of the day when I had also been sweating more and drinking more than I had been previously. Plus, it means I have cool post-run data to see how much I consumed and figure out if I want to adjust my strategy. This time, though? I wouldn’t change a thing. I nailed it! I averaged 585 mg/hour of sodium across all ~16 hours of my run. I also averaged ~264 calories/hour, which is above my ~250/hr goal. I did skip – intentionally – the very last snack at the top of the 16th hour, and it still meant that I was above goal in all my metrics. I don’t set goals for carb intake, but in case you were wondering, I ended up averaging 29.9 grams of carbs/hour (min 12, max 50, and the average snack is 15.4 carbs), but that’s totally coincidental. Overall, I consumed 3,663 calories, which was 419 carbs, 195 g of fat, and 69 grams of protein.

With EPI, as I mentioned that means I have to swallow enzyme pills with every snack, which was every 30 minutes. I swallowed 71 OTC enzyme pills (!) to match all that fuel, plus 26 electrolyte pills…meaning I swallowed 97 pills in 16 hours. You can see why I get tired of swallowing!

A graph showing the rates of sodium/hr for each 16 hours of the run (averaging above 500mg/hr); calories per hour (averaging above 250/hour), and carbs per hour.

Here’s a visual where you can see my consumption of calories, sodium, (and carbs) over the course of my race. The dip at the end is because I intentionally skipped the second snack of the hour 16 because I was almost done. Up to 15 hours (excluding the last hour), I had a slightly rolling increase in sodium/hr and a very slight decrease in calories/hr, with carbs/hr slightly increasing. Including the 16th hour (with a skipped snack intentionally), this changed the trends to slight rolling decrease in sodium/hr; the slight decrease trend in calories/hr continued; but it flattened the carbs/hr trend line to be neutral.

In contrast to my 82 mile where I had more significant fluctuations in sodium (and really felt it), I’m glad I was able to keep my sodium consumption at goal levels and also more easily respond when the conditions changed (hotter weather causing more sweat and more water intake than previous hours) so I could keep myself from getting into a hole sodium-wise. Overall, I feel like I get an A+ for executing my fueling and sodium strategy as planned. GI-wise, I get an A+++ because I had ZERO GI symptoms during and after the run! That’s really rare for any ultrarunners, let alone those of us with GI conditions (in my case, exocrine pancreatic insufficiency). Plus, despite the unclipped pump site and BG rise that resulted, I resumed back to typical running glucose levels for me and achieved 100% TIR 70-180 after that and I think likely 100% TIR for a more narrow range like 70-140, too, although I haven’t bothered to run those stats because I don’t care exactly what the numbers are. More importantly, I never went low, I never had any big drops or rises, and other than the brief 30 minutes of annoyance due to an unclipped pump site, diabetes did not factor any more into my thinking than blister management or EPI pill swallowing or sodium did – which is great!

Here’s a view of what I had leftover after my run. I had intentionally planned for an extra snack for every lap, plus I ran faster so I needed fewer overall. I also had packed extra enzymes and electrolytes for every lap, hoping I would never need to stress about running out on any individual lap – and I didn’t, so those amounts worked well.

A view of the enzymes and electrolyte baggies after my run, with a few left in each baggie as I planned for extras. I also had some snacks I didn't eat, both because I planned one extra per lap but I also ran faster than I expected, so I needed fewer overall

POST-RUN RECOVERY

As soon as I stopped running and took a picture at the finish line, we got ready to head home. My muscles froze up as soon as I stopped, just like always, so I moved like a tin person for a few steps before I loosened back up and was able to walk normally. I got home, and was able to climb into the shower (and out!) without too much hardship. I climbed into bed, hydrated, and was able to go to sleep pretty normally for about 5 hours. I woke up at 5am pretty awake, which possibly was also due to the fact that I had been sleep shifting my sleep schedule, but I also felt really stiff and used the opportunity to point and flex my ankles. I slept every 20-30 minutes off and on for another few hours before I finally got up at 8am and THEN felt really sore and stiff! My right lower shin was sore and had felt sore just a tiny bit in the last few miles of my run, so it wasn’t surprising that it was sore. My right hip, which is the one I had been watching prior to the race, was sore again. I hobbled around the house and started to loosen up, enough that I decided that I would put shoes on and try to go for a short easy walk. Usually, I can’t psychologically fathom putting shoes on my feet after an ultra, but my feet felt really decent! I had some blisters, sure, but I hadn’t even noticed them running and they didn’t hurt to walk on. My hip and ankle were more noticeable. I didn’t try to take the stairs and used the elevator, then began hobbling down the sidewalk. Ouch. My hip was hurting so much that I stopped at the first bench and laid down on it to stretch my hip out. Then I walked .3 miles to the next bench and again stretched my hip. A little better, so we went out a bit farther with the plan to turn around, but my hip finally loosened up after a half mile where I could mostly walk normally! Hooray. In total, I managed 1.5 miles or so of a walk, which is pretty big for me the day after an ultra run.

Meaningfully, overnight, I still had 100% time in range (ideal glucose levels). I did not have to do any extra work, thanks to OpenAPS and autosensitivity which adjusts automatically to any increases and later return to normal insulin sensitivity from so much activity!

A 12 hour view of glucose levels after my 100k. This was 100% TIR between 70-180 and probably a tighter range, although I did not bother to calculate what the tighter range is.

The next night, I slept even better, and didn’t notice any in-bed stiffness, although again on the second morning I felt stiff getting out of bed, but was able to do my full 5k+ walk route with my hip loosening up completely by a mile so that I didn’t even think about it!

On day 3, I feel 90% back to normal physically. I’m mostly fatigued,which Scott keeps reminding me is “as one should be” after runnning 100k! The nice change is that with previous ultras or long runs, I’ve felt brain fog for days or sometimes weeks – likely due to not fueling enough. But with my A+ fueling, my brain feels great – and good enough that it’s annoyed with my body still being a little bit tired. Interestingly, my body is both tired but also itching for more activity and new adventures. My friend compared it to “sea legs” where the brain has learned that the body should always be in motion, which is a decent analogy.

WHAT I HAVE LEARNED

I wouldn’t change anything in terms of my race pacing, execution, aid station stops, fueling, etc. for this run.

What I want to make sure I do next time includes continuing to adapt my training to listen to my body, rather than sticking to my pre-decided plan of how much to run. I feel like I can do that both because I now have 3000+ miles on my body of lifetime running (that I didn’t have for my first ultra); and I now have two ultras (last year’s 82 miles post-broken toe and this year’s 100k with minor hiccups like a sore shin and a hip at different times) where I was forced to or chose to adapt training, and it turned out just as good as I would have expected. For my 100k, I think the adaptation to 3 runs per week, all with my vest, ended up working well. This is the first run where I didn’t have noticeable shoulder soreness from my pack!

Same goes for taper: I don’t think, at my speed/skill level, that exact taper strategy makes a difference, and this experience confirmed it, doing DIY ultras and being able to flex a week forward or back based on how I’m physically feeling and when the best weather will be is now my preferred strategy for sure.

—-

If you’re new to ultras and haven’t read any of my other posts, consider reading some of the following, which I’ve alluded to in my post and directly contribute to the above situation being so positive:

Feel free to leave questions if you have any, either about slow ultra running in general or any other aspects of ultra running! I’m a places-from-last kind of ultra runner, but I’m happy to share my thinking process if it helps anyone else plan their own adventures.

We Have Changed the Standards of Care for People With Diabetes

We’ve helped change the standard of care for people with diabetes, with open source automated insulin delivery.

I get citation alerts sometimes when my previous research papers or articles are cited. For the last few years, I get notifications when new consensus guidelines or research comes out that reference or include mention of open source automated insulin delivery (AID). At this time of year, the ADA Standards of Care is released for the following year, and I find out usually via these citation alerts.

Why?

This year, in 2023, there’s a section on open source automated insulin delivery!

A screenshot of the 2023 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

But did you know, that’s not really new? Here’s what the 2022 version said:

A screenshot of the 2022 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

And 2021 also included…

A screenshot of the 2021 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

And 2020? Yup, it was there, too.

A screenshot of the 2020 ADA Standards of Care section under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

All the way back to 2019!

A screenshot of the 2019 ADA Standards of Care under Diabetes Technology (7) that lists DIY closed looping, meaning open source automated insulin delivery

If you read them in chronological order, you can see quite a shift.

In 2019, it was a single sentence noting their existence under a sub-heading of “Future Systems” under AID. In 2020, the content graduated to a full paragraph at the end of the AID section (that year just called “sensor-augmented pumps”). In 2021, it was the same paragraph under the AID section heading. 2022 was the year it graduated to having its own heading calling it out, with a specific evidence based recommendation! 2023 is basically the same as 2022.

So what does it say?

It points out patients are using open source AID (which they highlight as do-it-yourself closed loop systems). It sort of incorrectly suggests healthcare professionals can’t prescribe these systems (they can, actually – providers can prescribe all kinds of things that are off-label – there’s just not much point of a “prescription” unless it’s needed for a person’s elementary school (or similar) who has a policy to only support “prescribed” devices).

And then, most importantly, it points out that regardless, healthcare providers should assist in diabetes management and support patient choice to ensure the safety of people with diabetes. YAY!

“…it is crucial to keep people with diabetes safe if they are using these methods for automated insulin delivery. Part of this entails ensuring people have a backup plan in case of pump failure. Additionally, in most DIY systems, insulin doses are adjusted based on the pump settings for basal rates, carbohydrate ratios, correction doses, and insulin activity. Therefore, these settings can be evaluated and modified based on the individual’s insulin requirements.”

You’ll notice they call out having a backup plan in case of pump failure.

Well, yeah.

That should be true of *any* AID system or standalone insulin pump. This highlights that the needs of people using open source AID in terms of healthcare support are not that different from people choosing other types of diabetes therapies and technologies.

It is really meaningful that they are specifically calling out supporting people living with diabetes. Regardless of technology choices, people with diabetes should be supported by their healthcare providers. Full stop. This is highlighted and increasingly emphasized, thanks to the movement of individuals using open source automated insulin delivery. But the benefits of this is not limited to those of us using open source automated insulin delivery; this spills over and expands to people using different types of BG meters, CGM, insulin pumps, insulin pens, syringes, etc.

No matter their choice of tools or technologies, people with diabetes SHOULD be supported in THEIR choices. Not choices limited by healthcare providers, who might only suggest specific tools that they (healthcare providers) have been trained on or are familiar with – but the choices of the patient.

In future years, I expect the ADA Standard of Care for 2024 and beyond to evolve, in respect to the section on open source automated insulin delivery.

The evidence grading should increase from “E” (which stands for “Expert consensus or clinical experience”), because there is now a full randomized control trial in the New England Journal of Medicine on open source automated insulin delivery, in addition to the continuation results (24 weeks following the RCT; 48 full weeks of data) accepted for publication (presented at EASD 2022), and a myriad of other studies ranging from retrospective to prospective trials. The evidence is out there, so I expect that this evidence grading and the text of the recommendation text will evolve accordingly to catch up to the evidence that exists. (The standards of care are based on literature available up to the middle of the previous year; much of the things I’ve cited above came out in later 2022, so it matches the methodology to not be included until the following year; these newest articles should be scooped up by searches up to July 2023 for the 2024 edition.)

In the meantime, I wish more people with diabetes were aware of the Standards of Care and could use them in discussion with providers who may not be as happy with their choices. (That’s part of the reason I wrote this post!)

I also wish we patients didn’t have to be aware of this and don’t have to argue our cases for support of our choices from healthcare providers.

But hopefully over time, this paradigm of supporting patient choice will continue to grow in the culture of healthcare providers and truly become the standard of care for everyone, without any personal advocacy required.

Did you know? We helped change the standards of care for people living with diabetes. By Dana M. Lewis from DIYPS.org

Dealing With And Avoiding Chronic Disease Management Burnout

I’ve been thinking about juggling lately, especially as this year I’ve had to add a series of new habits and behaviors and medications to manage not one but two new chronic diseases. Getting one new chronic disease is hard; getting another is hard; and the challenges aren’t necessarily linear or exponential, and they’re not necessarily obvious up front.

But sometimes the challenges do compound over time.

In January when I started taking pancreatic enzyme replacement therapy (PERT) for exocrine pancreatic insufficiency (EPI or PEI), I had to teach myself to remember to take enzymes at every meal. Not just some time around the meal, but 100% every time before (by only a few minutes) or right at the start of the meal. With PERT, the timing matters for efficacy. I have a fast/short feedback loop – if I mis-time my enzymes or don’t take them, I get varying symptoms within a few hours that then bother me for the rest of the day, overnight, and into the next morning. So I’m very incentivized to take the enzymes and time them effectively when I eat. However, as I started to travel (my first trip out of the country since the pandemic started), I was nervous about trying to adapt to travel and being out of my routine at home where I’ve placed enzymes in visible eye sight of every location where I might consume food. Thankfully, that all went well and I managed not to forget taking enzymes when I ate and all was well. But I know I’m still building the habit of taking enzymes and eating, and that involves both always having enzymes with me and remembering to get them out and take them. It sounds like a trivial amount of things to remember, but this is added on top of everything else I’m doing for managing my health and well-being.

This includes other “simple” things like taking my allergy medications – because I’m allergic to cats (and we have them!), trees, dust, etc. And vitamins (I’m vitamin D deficient when I don’t take vitamin D).

And brushing my teeth and flossing.

You do that too, right? Or maybe you’re one of those people who struggle to remember to floss. It’s normal.

The list of well-being management gets kind of long when you think about all the every day activities and habits you have to help you stay at your best possible health.

Eat healthy! (You do that, right? 😉 )

Hydrate!

Exercise!

Etc.

I’ve also got the background habits of 20 years of living with diabetes: keeping my pump sites on my body; refilling the reservoir and changing the pump site every few days; making sure the insulin doesn’t get too hot or cold; making sure my CGM data isn’t too noisy; changing my CGM sensor when needed; estimating ballpark carbs and entering them and/or temporary targets to indicate exercise into my open source AID; keeping my AID powered; keeping my pump powered; keeping my phone – which has my CGM visibility on it – powered and nearby. Ordering supplies – batteries and pump sites and reservoirs and CGM transmitters and CGM sensors and insulin and glucagon.

Some of these are daily or every few days tasks; others are once or twice a month or every three months.

Those stack up sometimes where I need to refill a reservoir and oops, get another bottle of insulin out of the fridge which reminds me to make a note to check on my shipment of insulin which hasn’t arrived yet. I also need to change my pump site and my CGM sensor is expiring at bedtime so I need to also go ahead and change it so the CGM warmup period will be done by the time I go to sleep. I want to refill my reservoir and change the pump site after dinner since the dinner insulin is more effective on the existing site; I think of this as I pull my enzymes out to swallow as I start eating. I’ll do the CGM insertion when I do my pump site change. But the CGM warmup period is then in the after-dinner timeframe so I then have to keep an eye on things manually because my AID can’t function without CGM data so 2 hours (or more) of warmup means extra manual diabetes attention. While I’m doing that, I also need to remember to take my allergy medication and vitamin D, plus remembering to take my new thyroid medication at bedtime.

Any given day, that set of overlapping scenarios may be totally fine, and I don’t think anything of them.

On other days, where I might be stressed or overwhelmed by something else – even if it’s not health-related – that can make the above scenario feel overwhelmingly difficult.

One of the strategies I discussed in a previous post relative to planning travel or busy periods like holidays is trying to separate tasks in advance (like pre-filling a reservoir), so the action tasks (inserting a pump site and hooking it up to a new reservoir) don’t take as long. That works well, if you know the busy period is coming.

But sometimes you don’t have awareness of a forthcoming busy period and life happens. Or it’s not necessarily busy, per se, but you start to get overwhelmed and stressed and that leaks over into the necessary care and feeding of medical stuff, like managing pump sites and reservoirs and sensors and medication.

You might start negotiating with yourself: “do I really need to change that pump site today? It can wait until tomorrow”. Or you might wait until your reservoir actually hits the ‘0’ level (which isn’t fully 0; there’s a few units plus or minus some bubbles left) to refill it. Or other things like that, whether it’s not entering carbs into your pump or AID or not bolusing. Depending on your system/setup, those things may not be a big deal. And for a day or two, they’re likely not a big deal overall.

But falling into the rut of these becoming the new normal is not optimal – that’s burnout, and I try to avoid getting there.

When I start to have some of those thought patterns and recognize that I have begun negotiating with myself, I try to voice how I’m feeling to myself and my spouse or family or friends. I tell them I’m starting to feel “crispy” (around the edges) – indicating I’m not fully burnt out, but I could get all the way to burnout if I don’t temporarily change some things. (Or permanently, but often for me temporary shifts are effective.)

One of the first things I do is think through what is the bare minimum necessary care I need to take. I go above and beyond and optimize a LOT of things to get above-target outcomes in most areas. While I like to do those things, they’re not necessary. So I think through the list of necessary things, like: keeping a working pump site on my body; keeping insulin in a reservoir attached to my pump; keeping my CGM sensor working; and keeping my AID powered and nearby.

That then leaves a pile of tasks to consider:

  1. Not doing at all for ___ period of time
  2. Not doing myself but asking someone else to do for ____ period of time

And then I either ask or accept the offers of help I get to do some of those things.

When I was in high school and college, I would have weekends where I would ask my parents to help. They would take on the task of carb counting (or estimating) so I didn’t have to. (They also did HEAPS of work for years while I was on their insurance to order and keep supplies in the house and wrangle with insurance so I didn’t have to – that was huge background help that I greatly appreciated.)

Nowadays, there are still things I can and do get other people to help with. Sometimes it’s listening to me vent (with a clear warning that I’m just venting and don’t need suggestions); my parents often still fill that role for me! Since I’m now married and no longer living alone, Scott offers a lot of support especially during those times. Sometimes he fills reservoirs for me, or more often will bring me supplies from the cabinet or fridge to wherever I’m sitting (or even in bed so I don’t have to get up to go change my site). Or he’ll help evaluate and determine that something can wait until a later time to do (e.g. change pump site at another time). Sometimes I get him to open boxes for me and we re-organize how my supplies are to make them easier to grab and go.

Those are diabetes-specific examples, but I’ve also written about how helpful additional help can be sometimes for EPI too, especially with weighing and estimating macronutrient counts so I can figure out my PERT dosing. Or making food once I’ve decided what I want to eat, again so I can separate deciding what to eat and what the counts/dosing is from the action tasks of preparing or cooking the food.

For celiac, one of the biggest changes that has helped was Scott asking family members to load the “Find Me Gluten Free” app on their phone. That way, if we were going out to eat or finding a takeout option, instead of everyone ALWAYS turning to me and saying “what are the gluten free options?”, they could occasionally also skim the app to see what some of the obvious choices were, so I wasn’t always having to drive the family decision making on where to eat.

If you don’t have a chronic illness (or multiple chronic illnesses), these might not sound like a big deal. If you do (even if you have a different set of chronic disease(s)), maybe you recognize some of this.

There are estimates that people with diabetes make hundreds of decisions and actions a day for managing living with diabetes. Multiply that times 20 years. Ditto for celiac, for identifying and preparing and guarding against cross-contamination of said gluten-free food – multiply that work every day times 14 years. And now a year’s worth of *every* time I consider eating anything to estimate (with reading nutrition labels or calculating combinations based on food labels or weighing and googling and estimating compared to other nutrition labels) how much enzymes to take and remembering to swallow the right number of pills at the optimal times. Plus the moral and financial weight of deciding how to balance efficacy with cost of these enzymes. Plus several months now of an additional life-critical medication.

It’s so much work.

It’s easy to get outright burnt out, and common to start to feel a little “crispy” around the edges at times.

If you find yourself in this position, know that it’s normal.

You’re doing a lot, and you’re doing a great job to keep yourself alive.

You can’t do 110% all the time, though, so it is ok to figure out what is the bare minimum and some days throughout the year, just do that, so you can go back to 110%-ing it (or 100%-ing) the other days.

With practice, you will increasingly be able to spot patterns of scenarios or times of the year when you typically get crispy, and maybe you can eventually figure out strategies to adapt in advance (see me over here pre-filling reservoirs ahead of Thanksgiving last week and planning when I’d change my pump site and planning exactly what I would eat for 3 days).

TLDR:

  • Living with chronic disease is hard. And the more diseases you have, the harder it can be.
  • If you live with or love someone with chronic disease(s), ask them if you can help. If they’re venting, ask if they want you to listen (valuable!) or to let you know if at any point they want help brainstorming or for you to provide suggestions (helpful *if* desired and requested).
  • If you’re the one living with chronic disease(s), consider asking for help, even with small things. Don’t let your own judgment (“I should be able to do this!”) get in your way of asking for help. Try it for a day or for a weekend.
Dealing with and avoiding chronic disease burnout by Dana M. Lewis

Modifying Thanksgiving and Other Holiday Meals With Exocrine Pancreatic Insufficiency (and Celiac)

In the last few years, I’ve had the opportunity (or challenge) of re-thinking how I do holiday food traditions. For the last 13+ years I’ve figured out how to do everything gluten free (because I have celiac). I had that figured out pretty well. But more recently, when I was eliminating onion and garlic and trying low FODMAP last year, it was a lot harder. Instead of modifying what I usually did, I essentially started from a blank page in figuring out what I *could* eat and then what I wanted to eat.

Thankfully, this year I have many more options. Since I realized it was exocrine pancreatic insufficiency (EPI) that was causing my GI issues, I am back to being able to eat whatever (gluten free) that I want. It’s a lot easier. But it’s still different this year than years prior, because I need to generally estimate how many grams of fat and protein in what I am eating in order to determine how much pancreatic enzyme replacement therapy (PERT) that I need to take to “cover” the meal so I can digest it.

Usually at Thanksgiving, we do a family-style meal. (With a group of family that is COVID-boosted and everyone does a rapid test before they come.) We all help make food and set it out on a table, and people pass it around and serve themselves. In the past, I’ve had a few gluten free specific dishes that just sat in front of my plate, and I served from those and took other naturally GF options (like sweet potatoes, green beans, etc) as they were passed around.

This year, I wasn’t sure how I wanted to handle it. I’m still not great at guesstimating the amount of fat and protein in food the way I am with carb estimates (for which I have 20 years of practice!). I knew I would want to weigh some of the food to help estimate it (turkey, stuffing, etc that are likely to be higher fat and/or protein quantities) whereas others like sweet potatoes were something I generally have estimated well.

But would I bring my scale to the table and pick up my plate and weigh it with each portion I served? That seemed like it might draw attention to me and generally reduce the joy of the meal for me. I could fill my plate then go back to the kitchen with it and weigh it; but that also felt like it would steal some of my joy from the experience of sitting down and eating with everybody.

Instead, I decided that I would dish up my plate in the kitchen, where I could weigh things and then pop them onto my plate, then take my plate out and have it ready to go (all estimated and pre-decided with how much PERT I needed to take) when everyone else was ready to eat.

That also inspired some flexibility in the choices of what I was eating, too. Instead of cooking a small, separate gluten free turkey (from which there were usually too many leftovers), I decided instead to go with a pre-made meal that is turkey, mashed potatoes, gravy, and a side of green beans. “Pre-made” may sound gross, but there’s a brand that does mail-order ready-made gluten free meals that are refrigerated and you only have to microwave them. And I happen to really like their turkey dinner one. So this year I decided to get several of those turkey meals, so that my turkey, mashed potatoes, and gravy were already pre-portioned and I can happily use the nutrition counts on the package. That’s the majority of what I was stressing about measuring/estimating! So that takes out a) a lot of work of making a separate GF turkey and b) makes it easier because I already have counts for the biggest portions of my plate.

I will still make a box of gluten free stuffing, but that’s essentially only one thing for which I’ll need to use the scale to estimate the serving size and nutrition counts. Otherwise, I’ll microwave my turkey meal, put it on my nice plate, add my portion of stuffing, and be able to take it to the table and eat just like everyone else.

I’ve also worked to take the guesswork and stress out of dessert, too.

I realized a few years ago that no one was eating any of the GF desserts I brought, even when I would specially hand-make gluten free pumpkins pies. In part because no one wanted to “take” my food (even if I offered it to them); but there’s also a bias that GF stuff is less good (which is sometimes true) and there’s a gluten-y option so why not just eat that? But I realized that I miss the joy of being able to pick from 2-3 dessert options just like everyone else. So instead of making or bringing one big GF pie and having a slice and having way too many leftovers, I’d just as soon get a frozen miniature gluten free pumpkin pie. And last year, I decided to get *two* miniature pies – for options! Then I could be like everyone else and decide on a whim whether I felt like pumpkin pie or a different flavor of pie. So that’s what I’m doing this year, too. I got 3 miniature pies – pumpkin, lemon, and apple. Yum!

The other thing this thought exercise has brought is the realization that if I’m making/preparing/bringing all my own food, I don’t have to limit myself to just eating it on Thanksgiving. This way I’ll get to have more moderate portions multiple times, without feeling inclined to overeat at the main Thanksgiving meal – because my meal can be repeated multiple times throughout the week, complete with a selection of tasty GF pie options.

I spent part of last week stressed about figuring out what to eat, what the nutrition counts are, etc. But I’ve tried to turn this into an upside, which I think it actually is (given my situation of also having celiac/GF to contend with alongside figuring out EPI).

  • Tips for holidays for those of us with chronic illnesses

This also reminded me how helpful I find it to separate the stressful decision making (what am I going to eat) and the math (what are the counts; how many enzymes does this mean I need?) from the act of making and consuming the food. All together, those can feel stressful and overwhelming (especially if I’m already stressed and overwhelmed about anything else). Separating those actions takes the time pressure off.

If you’re dealing with food allergies or food limitations or needing to dose medication (like enzymes) for your food, this is one way that I deal with reducing stress: planning ahead as much as possible and having as much done in advance as possible.

I also do this for diabetes when possible, such as when I’m planning for a trip or a holiday week with lots of busy activities. I take some time in advance and set out needed supplies for a pump site change; I also pre-fill two or three reservoirs with insulin, so instead of having to do a reservoir AND change my site, I’ve done half the work and reduced the friction. With the reservoir set up ready to go and the pump site sitting on my bathroom counter, it makes it feel easier to change my pump site (even though it’s not that much more work, it feels like I’ve made the amount of time and hassle it takes a lot more doable).

  • Remember that you can ask for help

The final thing that I did to reduce stress was to ask for help. I told Scott (my husband) what I was stressing about. He asked how he could help, and mainly that was discussing my options and what I wanted to possibly eat and discussing the different options from bringing the scale to the table vs plating my food in the kitchen all the way to making different food (which I ultimately chose).

I also assigned him a task to help me do my nutrition estimates. One of the frozen GF individual-sized pies I bought is from an amazing GF bakery in Western Washington, but because they’re a small bakery their items don’t have nutrition counts. As he’s done in the past, I told him I want help a) weighing the pie and b) looking up GF apple pies to get a general ballpark nutrition estimate. We’d then use the weight of my actual pie to create an estimated count based off of similar GF apple pies with nutrition counts. It’s not perfect, but it’s better than my wild guessing.

And, having him help makes it feel more manageable overall, because I’m not doing it “all” by myself.

You don’t have to do it by yourself all the time. No, no one can swallow your enzyme pills for you, but the people in your life can help you look up nutrition information or find safe places for you to eat or find safe options that you can eat. Sometimes you need to ask for them to help, because people don’t always know that they can help. And be clear with them, whether you’re just venting and want a listening ear (valuable!) or whether you’re looking for brainstorming ideas and solutions for a particular thing – which can also be super helpful. But remember to ask. Don’t keep it all to yourself; you are loved and people want to help but they may not know how to help.

You’ll notice that the title of this blog post was about modifying things…but I didn’t modify my food choices at all in the sense of “reducing” my food as one might infer from traditional thinking about meal modifications. I’m not eating fewer grams of fat because I have exocrine pancreatic insufficiency. Medically, in general, it’s no longer recommended for people with EPI to consume lower fat diets than the general population. Instead, we dose enzymes to match the amount of fat (and protein and carbs) that we are eating. It’s similar to type 1 diabetes and insulin. Before insulin was discovered, people were on the starvation diet (to prolong dying); but once insulin was discovered we have been able to eat the same diet as other people, as long as we cover what we are eating with insulin. Individually, you may CHOOSE a different, specific diet approach that works for you; but medically, it’s not necessary to modify things in general based on EPI or type 1 diabetes. The biggest/primary modifications I make are to not eat gluten, because I have celiac disease. Otherwise, I estimate the carbs (to tell my open source automated insulin delivery system that I’m eating) and fat and protein (to calculate how many enzymes I should be taking for EPI) in what I’m eating and carry on, just like everyone else.

Modifying holiday meals with exocrine pancreatic insufficiency and a few tips for reducing stress at the holidays with chronic illnesses in general

Costs, Price and Calculations for Living With Diabetes and Exocrine Pancreatic Insufficiency and Celiac and Graves

Living with diabetes is expensive. However, the cost and price goes beyond the cost of insulin, which you may have heard about lately. In addition to insulin, you need tools and supplies to inject the insulin (e.g. syringes, insulin pens, or an insulin pump). Depending on those methods, you need additional supplies (e.g. pen needles for insulin pens, reservoirs and infusion sets for insulin pumps). You also need blood glucose monitoring supplies, whether that is meter and up to a dozen glucose test strips a day and/or a continuous glucose monitor which is made up of a disposable sensor and a reusable transmitter.

All those costs add up on a daily basis for people living with diabetes, even if you have health insurance.

Understanding the costs of living with chronic illness with health insurance in the US

Every year in the US we have “open enrollment” time when we opt-in or enroll into our choice of health insurance plan for the following year. I am lucky and have access to insurance through my husband’s employer, who covers part of the cost for him and me (as a spouse). We have a high-deductible (HSA-qualified) health plan, so our deductible (the amount we must pay before insurance begins to pay for a portion of the costs) is usually around $1,500-$2,500 USD for me. After that, I might pay either a fixed copay ($10 or $25 or similar) for a doctor’s visit, or a percentage (10% or 20%) while the insurance covers the rest of the cost. Then there is a fixed “out of pocket (OOP) max” cost for the year, which might be something like $3,000 USD total. Sometimes the OOP max is pretty close to the deductible, because we typically choose the ‘high deductible’ plan (with no monthly cost for the insurance plan) over a plan where we have a lower deductible but pay a monthly premium for the insurance.

That’s a very rough summary of how I see my health insurance. Everyone has different health insurers (the company providing the insurance) and different plans (the costs will be different based on whether it’s through a different employer or if it’s an individual plan).

So the costs to people with diabetes can vary quite a bit in the US, depending on whether you have insurance: there is variation in the monthly cost of the plan, the amount of the deductible, and the amount of the out of pocket max.

In order to choose my plan for the following year, I look at the total cost for the year of my health supplies and health care, then look at the plans. Usually, the high deductible plan “feels” more expensive because I might have to reach $2,500 before insurance kicks in; however, the out of pocket cap may only be $500 beyond that, so that I’m going to pay a maximum of $3,000 for the year in insurance-covered costs*. There are other types of plans that are lower deductible, such as insurance kicking in after a $250 deductible. That sounds better, right? Well, those plans come with a monthly cost (premium) of $250. So you need to factor that in ($250×12=$3,000) alongside the deductible and any costs up to the out of pocket max ($2,500). From this, you’d pay the $3,000 total yearly premium plus up to $2,500 OOP, or $5,500. Thus, even though it has a lower deductible and OOP, you’re in total paying much more ($5,500 vs $3,000) if you’re someone like me.

Why? Because I have >$3,000 of health supply costs every year.

This is why every few years (mostly after I forget what I learned the last time), I do the math on how much my supply costs to see if I’m still making the most cost-effective choices for me with my insurance plans.

I wanted to share this math methodology below, also because this year I have new variables, which are two new chronic diseases (exocrine pancreatic insufficiency and Graves) that add additional costs and healthcare needs and require me to want to re-check my math.

* Clarifying that previously and most years I pay out of pocket for minor, relatively low-cost health supplies like vitamins or tape to cover my CGM that I buy and do not get through insurance coverage, so my total costs are usually over that OOP max, but likely not by more than a few hundred dollars.

Note: Do not attempt to use this as an absolute cost of diabetes for anyone else. These numbers are based on my use cases in terms of volume of insulin, insurance coverage, etc. Ditto for trying to use the costs for EPI. Where relevant below, I provide rough estimates of my methodology so that another individual with diabetes or EPI/PEI could use similar methods to calculate their own rough costs, if they wished. However, this cannot be used to determine any average cost to people with diabetes more broadly, so don’t excerpt or cite this in those ways. This is purely n=1 math with conclusions that are unique to this n=1 (aka me) but with methods that can be extended for others.

I’ll cover my estimates for costs of diabetes, celiac, exocrine pancreatic insufficiency (EPI or PEI), and Graves’ disease below. This doesn’t account for visits (e.g. doctor’s appointments), lab tests, or other health costs such as x-rays for breaking bones, because those vary quite a bit year to year and aren’t guaranteed fixed costs. But the supplies I need for diabetes, EPI, etc are fixed costs, which I use to anchor my math. Given that they end up well above my OOP max, the then-variable amount of other costs (doctor’s appointments, lab work, etc) is minor in comparison and irrelevant regardless of how much it varies year to year.

The costs (for me) of daily living with diabetes

(You read the caveat note above, right? This is my math based on my volume of insulin, food intake, personal insulin sensitivity, etc. Lots of variables, all unique to me.)

To calculate the yearly costs of living with diabetes, I make a list of my diabetes supplies.

Primarily for me, those are:

  • Insulin
  • CGM sensors
  • CGM transmitter
  • Pump sites
  • Reservoirs

(Not included: meter/test strips or the cost of a pump or the cost of any hardware I’m using for my open source automated insulin delivery. I’ve not bought a new in-warranty pump in years, and that alone takes care of the OOP max on my insurance plan if I were to buy a pump that year. Anyway, the above list is really my recurring regular costs, but if you were purchasing a pump or on a subscription plan for a pump, you’d calculate that in as well).

First, I calculate the daily cost of insulin. I take the cost of a vial of my insulin and divide it by 1,000, because that’s how many units a vial of insulin has. Then I multiply that by the average number of units I use per day to get the cost per day of insulin, which for me is $4.36. (The yearly cost of insulin would be $1,592.)

Then, I calculate my CGM sensors. I take the total cost for a 3 month order of sensors and divide by the number of sensors; then divide by 10 days (because a sensor lasts about 10 days) to get the cost per day of a CGM sensor: about $11 per day. But, you also have to add in the cost of the re-usable transmitter. Again, factor the cost of a transmitter over the number of days it covers; for me it’s about $2 per day. In total, the cost per day of CGM is about $13 and the yearly cost of CGM is roughly $4,765.

Next is pump sites and reservoirs. You need both to go with your insulin pump: the pump site is the catheter site into your body and the tubing (this cumulatively gets replaced every few days), and the reservoir is disposable and is filled with insulin. The cost per day of pump sites and reservoirs is about $6 ($4.67 for a pump site and $1.17 for a reservoir) and the yearly cost of pump sites and reservoirs is $2,129.

If you add up these supplies (pump sites and reservoirs, CGM sensor and transmitter, insulin), the daily cost of diabetes for me is about $23. The yearly cost of diabetes for me is $8,486.

Give that $8,486 is well over the out of pocket max cost of $3,000, you can see why that for diabetes alone there is reason to pick the high deductible plan and pay a max of $3,000 for these supplies out of pocket.

The daily and yearly costs of living with celiac disease

But I don’t just have type 1 diabetes, so the above are not my only health supply costs.

I also have celiac disease. The treatment is a 100% gluten free diet, and eating gluten free is notoriously more expensive than the standard cost of food, whether that is groceries or eating out.

However, the cost of gluten free food isn’t covered by health insurance, so that doesn’t go in my cost calculation toward pricing the best insurance plan. Yet, it does go into my “how much does it cost every day from my health conditions” mental calculation.

I recently looked at a blog post that summarized the cost of gluten free groceries by state compared to low/medium/high grocery costs for the average person. By extrapolating my state’s numbers from a high-cost grocery budget, plus adding $5 each for eating out twice a week (typically gluten free food has at least a $2-3 surcharge in addition to being at higher cost restaurants, plus the fact that I can’t go eat at most drive-throughs, which is why I use $5/meal to offset the combined cost of the actual surcharge plus my actual options being more expensive).

I ended up estimating about a $3 daily average higher cost of being gluten free, or $1,100 per year cost of eating gluten free for celiac.

That’s probably an underestimate for me, but to give a ballpark, that’s another $1,000 or more I’m paying out of pocket in addition to healthcare costs through insurance.

The daily and yearly cost of living with exocrine pancreatic insufficiency and the daily and yearly cost of pancreatic enzyme replacement therapy

I spent a pleasant (so to speak) dozen or so years when “all” I had to pay for was diabetes supplies and gluten free food. However, in 2022, I was diagnosed with exocrine pancreatic insufficiency (and more recently also Graves’ disease, more on that cost below) and because I have spent ~20 years paying for diabetes, I wasn’t super surprised at the costs of EPI/PEI. However, most people get extreme sticker shock (so to speak) when they learn about the costs of pancreatic enzyme replacement therapy (PERT).

In summary, since most people don’t know about it: exocrine pancreatic insufficiency occurs for a variety of reasons, but is highly correlated with all types of diabetes, celiac, and other pancreatic conditions. When you have EPI, you need to take enzymes every time you eat food to help your body digest fat, protein, and carbohydrates, because in EPI your pancreas is not producing enough enzymes to successfully break down the food on its own. (Read a lot more about EPI here.)

Like diabetes, where different people may use very different amounts of insulin, in EPI people may need very different amounts of enzymes. This, like insulin, can be influenced by their body’s makeup, and also by the composition of what they are eating.

I use PERT (pancreatic enzyme replacement therapy) to also describe the prescription enzyme pills used for EPI. There are 6 different brands approved by the FDA in the US. They also come in different sizes; e.g. Brand A has 3,000, 6,000, 12,000, 24,000, 36,000 size pills. Those size refer to the units of lipase. Brand B has 3,000, 5,000, 10,000, 15,000, 20,000, 25,000, 40,000. Brands C, D, E and F have similar variety of sizes. The point is that when people compare amounts of enzymes you need to take into account 1) how many pills are they taking and 2) how much lipase (and protease and amylase) each of those pills are.

There is no generic for PERT. PERT is made from ground up pig pancreas. It’s expensive.

There are over the counter (OTC) enzymes made from alternative (plant etc) sources. However, there are ZERO studies looking at safety and efficacy of them. They typically contain much less lipase per pill; for example, one OTC brand pill contains 4,000 units of lipase per pill, or another contains 17,500 units of lipase per pill.

You also need to factor in the reliability of these non-approved pills. The quality of production can vary drastically. I had one bottle of OTC pills that was fine; then the next bottle of OTC pills I started to find empty capsules and eventually dumped them all out of the bottle and actually used a colander to filter out all of the enzyme powder from the broken capsules. There were more than 30 dud pill capsules that I found in that batch; in a bottle of 250 that means around 12% of them were unusable. That makes the reliability of the other ones suspect as well.

A pile of powder in the sink next to a colander where a bunch of pills sit. The colander was used to filter out the loose powder. On the right of the image is a baggie with empty pill capsules, illustrating where this loose powder came from. This shows the unreliability of over the counter (OTC) enzymes.

If the reliability of these pills even making it to you without breaking can be sketchy, then you need to assume that the counts of how much lipase (and protease and amylase) may not be precisely what the label is reporting. Again, there have been no tests for efficacy of these pills, so anyone with EPI or PEI needs to use these carefully and be aware of these limitations.

This unreliability isn’t necessarily true of all brands, however, or all types of OTC enzymes. That was a common brand of pancrelipase (aka contains lipase, protease, and amylase). I’ve had more success with the reliability of a lipase-only pill that contains about 6,000 units of lipase. However, it’s more expensive per pill (and doesn’t contain any of the other enzymes). I’ve used it to “top off” a meal with my prescription PERT when my meal contains a little bit more fat than what one PERT pill would “cover” on its own.

This combination of OTC and prescription PERT is where the math starts to get complicated for determining the daily cost and yearly cost of pancreatic enzyme replacement therapy.

Let’s say that I take 6-8 prescription PERT pills every day to cover what I eat. It varies because I don’t always eat the same type or amount of food; I adjust based on what I am eating.

The cost with my insurance and a 90 day supply is $8.34 for one PERT pill.

Depending on whether I am eating less fat and protein on a particular day and only need 6 PERT, the cost per day of enzymes for EPI might be $50.04, whereas if I eat a little more and need 8 PERT, the cost per day of enzymes for EPI could be up to $66.72.

The costs per year of PERT for EPI then would range from $18,000 (~6 per day) to $24,000 (~8 per day).

Please let that sink in.

Eighteen to twenty four thousand dollars to be able to successfully digest my food for a single year, not taking into account the cost of food itself or anything else.

(See why people new to EPI get sticker shock?!)

Even though I’m used to ‘high’ healthcare costs (see above estimates of $8,000 or more per year of diabetes costs), this is a lot of money. Knowing every time that I eat it “costs” at least one $8.34 pill is stressful. Eating a bigger portion of food and needing two or three pills? It really takes a mental toll in addition to a financial cost to think about your meal costing $25.02 (for 3 pills) on top of the cost of the food itself.

This is why OTC pills are interesting, because they are drastically differently priced. The 4,000 unit of lipase multi-enzyme pill that I described costs $0.09 per pill, which is about $0.02 per 1000 units of lipase. Compared to my prescription PERT which is $0.33 per 1000 units of lipase, it’s a lot cheaper.

But again, check out those pictures above of the 4,000 units of lipase OTC pills. Can you rely on those?

Not in the same way you can with the prescription PERT.

In the course of taking 1,254 prescription PERT pills this year (so far), I have not had a single issue with one of those pills. So in part the high cost is to ensure the safety and efficacy. Compare that to 12% (or more) of the OTC pills being complete duds (empty pill capsules that have emptied their powder into the bottle) and some % of unreliability even with a not-broken capsule.

Therefore it’s not feasible to me to completely replace prescription PERT with OTC pills, although it’s tempting purely on price.

I previously wrote at a high level about the cost calculations of PERT, but given my desire to look at the annual cost for estimating my insurance plan (plus many more months of data), I went deeper into the math.

I need to take anywhere from 2-6 OTC pills (depending on the brand and size) to “match” the size of one PERT. I found a new type (to me) of OTC pills that are more units of lipase (so I need 2 to match one PERT) instead of the two other kinds (which took either 4 or 6 to match one PERT), which would enable me to cut down on the number of pills swallowed.

The number of pills swallowed matters.

So far (as of mid-November, after starting PERT in early January), I have swallowed at least 1,254 prescription PERT enzyme pills. I don’t have as much precision of numbers on my OTC pills because I don’t always log them (there’s probably a few dozen I haven’t written down, but I probably have logged 95% of them in my enzyme tracking spreadsheet that I use to help calculate the amount needed for each meal/snack and also to look at trends.), but it’s about 2,100 OTC enzyme pills swallowed.

This means cumulatively this year (which is not over), I have swallowed over 3,300 enzyme pills. That’s about 10 enzyme pills swallowed every day!

That’s a lot of swallowing.

That’s why switching to a brand that is more units of lipase per pill, where 2 of these new OTC kind matches one PERT instead of 4-6, is also significant. While it is also slightly cheaper than the combination of the two I was using previously (a lipase-only and a multi-enzyme version), it is fewer pills to achieve the same amount.

If I had taken prescription PERT instead of the OTCs, it would have saved me over 1,600 pills to swallow so far this year.

You might be thinking: take the prescription PERT! Don’t worry about the OTC pills! OMG that’s a lot of pills.

(OMG, it *is* a lot of pills: I think that as well now that I’m adding up all of these numbers.)

Thankfully, so far I am not having issues with swallowing these pills. As I get older, that might change and be a bigger factor in determining my strategy for how I dose enzymes; but right now, that’s not the biggest factor. Instead, I’m looking at efficacy (getting the right amount of enzymes to match my food), the cost (in terms of price), and then optimizing and reducing the total number of pills if I can. But the price is such a big variable that it is playing the largest role in determining my strategy.

How should we collectively pay for this?

You see, I don’t have EPI in a vacuum.

As I described at the top of the post, I already have $8,000+ of yearly diabetes costs. The $18,000 (or $24,000 or more) yearly enzyme costs are a lot. Cumulatively, just these two alone mean my supply costs are $26-32,000 (or more), excluding other healthcare costs. Thankfully, I do have insurance to cover costs after I hit my out of pocket max, but the bigger question is: who should be paying for this?

If my insurer pays more, then the employer pays more, which means employees get worse coverage on our pooled insurance plan. Premiums go up and/or the plans cover less, and the out of pocket costs to everyone goes up.

So while it is tempting to try to “stuff” all of my supply needs into insurance-covered supplies, in order to reduce my personal out of pocket costs in the short run, that raises costs for everyone in the long run.

This year, for all of those (remember I estimated 2,100 OTC pills swallowed to date) OTC pills I bought, it cost me $515. Out of pocket. Not billed through insurance; they know nothing about it.

It feels like a lot of money. However, if you calculate how many PERT it replaced and the cost per PERT pill, I saved $4,036 by swallowing 1,652 extra pills.

Is paying $500 to save everyone else $4000 worth it?

I think so.

Again, the “price” question gets interesting.

The raw costs of yearly supplies I don’t pay completely; remember with health insurance I am capped at $3,000 out of pocket for supplies I get through insurance. However, again, it’s worth considering that additional costs do not cost me but they cost the insurer, and therefore the employer and our pool of people in this insurance plan and influences future costs for everyone on insurance. So if I can afford (although I don’t like it) $500-ish out of pocket and save everyone $4,000 – that’s worth doing.

Although, I think I can improve on that math for next year.

I was taking the two OTC kinds that I had mentioned: one that was lipase-only and very reliable, but $0.28/pill or $0.04 per 1000 units of lipase (and contains ~6000 units of lipase). The less reliable multi-enzyme pill was cheaper ($.09) per pill but only contains 4000 units of lipase, and was $.02 per 1000 units of lipase. That doesn’t factor in the duds and the way I had to increase the number of pills to account for the lack of faith I had in the 4000 units of lipase always being 4000 units of lipase.

The new OTC pill I mentioned above is $0.39 per pill, which is fairly equivalent price to a combined lipase-only and multi-enzyme pill. In fact, I often would take 1+1 for snacks that had a few grams of protein and more than a few grams of lipase. So one new pill will cover 17,000 units of lipase (instead of 10,000, made up of 6000+4000) at a similar cost: $0.39 instead of $0.36 (for the two combined). And, it also has a LOT more protease per pill, too. It has >2x the amount of protease as the multi-enzyme OTC pill, and is very similar to the amount of protease in my prescription PERT! I’ve mostly discussed the math by units of lipase, but I also dose based on how much protein I’m eating (thus, protease to cover protein the way lipase covers fat digestion), so this is also a benefit. As a result, two of the new OTC pill now more than match 1 PERT on lipase, double the protease to 1 PERT, and is only two swallows instead of the 4-6 swallows needed with the previous combination of OTCs.

I have only tested for a few days, but so far this new OTC is working fairly well as a substitute for my previous two OTC kinds.

Given the unreliability of OTCs, even with different brands that are more reliable than the above picture, I still want to consume one prescription PERT to “anchor” my main meals. I can then “top off” with some of the new OTC pills, which is lower price than more PERT but has the tradeoff cost of slightly less reliability compared to PERT.

So with 3 main meals, that means at least 3 PERT per day ($8.34 per pill) at $25.02 per day in prescription PERT costs and $9,132 per year in prescription PERT costs. Then to cover the additional 3-5 PERT pills I would otherwise need, assuming 2 of the new OTC covers 1 PERT pills, that is 6-10 OTC pills.

Combined, 3 PERT + 6 OTC pills or 3 PERT + 10 OTC pills would be $27.36 or $28.92 per day, or $9,986 or $10,556 per year.

Still quite a bit of money, but compared to 6-8 PERT per day (yearly cost $18,264 to $24,352), it saves somewhere between $7,708 per year (comparing 6 PERT to 3 PERT + 6 OTC pills per day) all the way up to $14,366 per year (comparing 8 PERT to 3 PERT +10 OTC pills per day).

And coming back to number of pills swallowed, 6 PERT per day would be 2,190 swallows per year; 8 PERT pills per day is 2,920 swallows per year; 3 PERT + 6 OTC is 9 pills per day which is 3,285 swallows per year; and 3 PERT + 10 OTC is 13 swallows per day which is 4,745 swallows per year.

That is 1,095 more swallows per year (3PERT+6 OTC vs 6 PERT) or 1,825 more swallows per year (3 PERT + 10 OTC vs 8 PERT).

Given that I estimated I swallowed ~10 enzyme pills per day this year so far, the estimated range of 9-13 swallows with the combination of PERT and OTC pills (either 3 PERT + (6 or 10) OTC) for next year seems reasonable.

Again, in future this might change if I begin to have issues swallowing for whatever reason, but in my current state it seems doable.

The daily and annual costs of thyroid treatment for Graves’ Disease

No, we’re still not done yet with annual health cost math. I also developed Graves’ disease with subclinical hyperthyroidism this year, putting me to a grand total of 4 chronic health conditions.

Luckily, though, the 4th time was the charm and I finally have a cheap(er) one!

My thyroid med DOES have a generic. It’s cheap: $11.75 for 3 months of a once-daily pill! Woohoo! That means $0.13 per day cost of thyroid treatment and $48 per year cost of thyroid treatment.

(Isn’t it nice to have cheap, easy math about at least one of 4 things? I think so!)

Adding up all the costs of diabetes, celiac disease, exocrine pancreatic insufficiency and Graves’ Disease

High five if you’ve read this entire post; and no problem if you skimmed the sections you didn’t care about.

Adding it all up, my personal costs are:

  • Diabetes: $23.25 per day; $8,486 per year
  • Celiac: $3 per day; $1,100 per year (all out of pocket)
  • Exocrine Pancreatic Insufficiency:
    • Anywhere from $50.04 up to $66.72 per day with just prescription PERT pills; $18,265 (6 per day) to $24,353 (8 per day) per year
    • With a mix of prescription and OTC pills, $27.36 to $28.92 per day; $9,986 to $10,556 per year.
    • Of this, the out of pocket cost for me would be $2.34 to $3.90 per day; or $854 up to $1,424 per year.
  • Thyroid/Graves: $0.13 per day; $48 per year

Total yearly cost:

  • $27,893 (where EPI costs are 6 prescription PERT per day); 2,190 swallows
  • $33,982 (where EPI costs are 8 prescription PERT per day); 2,920 swallows
  • $19,615 (where EPI costs are 3 prescription PERT and 6 OTC per day); 3,285 swallows
  • $20,185 (where EPI costs are 3 prescription PERT and 9 OTC per day); 4,745 swallows

* My out of pocket costs per year are $854-$1424 for EPI when using OTCs to supplement prescription PERT and an estimated $1,100 for celiac-related gluten free food costs. 

** Daily cost-wise, that means $76.42, $93.10, $53.74, or $55.30 daily costs respectively.

*** The swallow “cost” is 1,095-1,825 more swallows per year to get the lower price cost of enzymes by combining prescription and OTC.

Combining these out of pocket costs with my $3,000 out of pocket max on my insurance plan, I can expect that I will therefore pay around $4,900 to $5,600 next year in health supply costs, plus another few hundred for things like tape or vitamins etc. that aren’t major expenses.

TLDR: 

  • Diabetes is expensive, and it’s not just insulin.
    • Insulin is roughly 19% of my daily cost of diabetes supplies. CGM is currently 56% of my diabetes supply costs.
  • EPI is super expensive.
    • OTC pills can supplement prescription PERT but have reliability issues.
    • However, combined with prescription PERT it can help drastically cut the price of EPI.
    • The cost of this price reduction is significantly more pills to swallow on a daily basis, and adds an additional out of pocket cost that insurance doesn’t cover.
    • However in my case; I am privileged enough to afford this cost and choose this over increasing everyone in my insurance plan’s costs.
  • Celiac is expensive and mostly an out of pocket cost.
  • Thyroid is not as expensive to manage with daily medication. Yay for one of four being reasonably priced!

REMEMBER to not use these numbers or math out of context and apply them to any other person; this is based on my usage of insulin, enzymes, etc as well as my insurance plan’s costs.

Yearly costs, prices, and calculations of living with 4 chronic diseases (type 1 diabetes, celiac, Graves, and exocrine pancreatic insufficiency)

What Do You See When You See (Or Think Of) Diabetes?

What do you see when you see (or think of) diabetes?

In my house, I see small piles of low treatments (for hypoglycemia) in every place that I hang out. On my desk next to my computer. In my bedside table. On the counter next to the door where I grab them before heading out for a run or a walk. On the edge of the bathtub in my shower, because low blood sugars happen everywhere.

Sometimes, one of my nephews spots them in a translucent pocket on my shorts. His brain sees candy at first, not a medical treatment. Which is fine – he’s young. He’s learning that for Aunt Dana, they’re not “candy” or a “treat” – they’re a medical treatment.

All of the nieces and nephews have learned or are learning that Aunt Dana has “robot parts”, which is how they see my pump clipped to my pocket or waist band or the hard lump (CGM sensor) they feel or see on my arm.

What I hope people see, though, is that diabetes is not a death sentence. Thanks to improvements in insulin, insulin delivery, and blood glucose measuring, it’s no longer visibly tied to possible complications of diabetes, like amputations, kidney dialysis, or loss of vision. That is what I saw when I was diagnosed with diabetes in 2002, and what was presented to me.

I hope instead that people see people with diabetes like me living our lives, running 82 mile ultramarathons (for those of us who wish to do that), experiencing pregnancy (for those who wish to do that), achieving our career goals, living life in whatever ways we want to live our lives. Just like everyone else.

It’s worth noting that when typing this, autocorrect in my first sentence suggested “treat” instead of “treatment”.

That’s how computers “see” diabetes, too, with sugar and carbs equivalent with diabetes. Despite the fact that medical research shows that diabetes is a complicated combination of genetics, immune system shenanigans (my words), and numerous other factors not in a person’s control, humans haven’t gotten that message. People are still stigmatized and joked about.

So computers learn that. And that’s what they see.

When I was testing Stable Diffusion (an open source AI tool for generating images) recently, I learned about a site “Lexica” that shows you what other people have generated with similar key words. I thought it would be interesting to get ideas for better images to visualize concepts in posts about diabetes, so I searched diabetes.

A screenshot of search results in Lexica for the term "diabetes". Primarily it is images of people portrayed as very overweight and many images of a lot of food.

I should’ve known better. Humans say and think “diabetes” in response to seeing pictures of carbohydrates, so that’s what computers learn.

AI doesn’t know any better because humans haven’t taught themselves any better.

Sadly, “insulin pump” as a key word is disheartening in a different way.

A screenshot of image results from Lexica for the term "insulin pump", which mostly shows a mix of devices that look like blood glucose meters or pulse oximeters.

There are so few existing visuals and images of people with insulin pumps that the visual images generated by AI are a mix of weird hybrid old school computer components and blood glucose monitors or other medical devices.

“Hypoglycemia” mostly generates cartoons in foreign languages or made up languages that I’m guessing are jokes by people without diabetes about having low blood sugar and using it as an excuse for various things. “Hyperglycemia” brings a mix of the hypoglycemia-style cartoons and the diabetes-style images of carbs and how the AI thinks people with diabetes all look.

I’ve noticed this with AI-writing tools, too. AI is good at completing your sentence or writing a few sentences based on well known concepts and topics that already exist today. It’s not yet good at helping you write content about new concepts or building on existing content.

It’s trained on the content of today and the past, which means all of the biases, stereotypes, and stigmatizing content that aren’t good today are also extrapolated into our future with AI.

I don’t have all the answers or solutions (I wish I did), but I want to flag this as a problem. We can’t expect AI to do better trained on what we have and do today, because what we do today (stigmatize, stereotype, and harm people living with chronic diseases) is not ok and not good enough.

We need to change today and train AI with different inputs in order to get different outputs.

That starts with us changing our behavior today. As I wrote a few days ago, please speak up when you see chronic diseases being used as a “joke” and when we see people being stereotyped or when we see racism occurring.

It’s hard, it’s uncomfortable – both to speak up, and to be corrected.

I’ve been corrected before, on verbal patterns and phrases I learned from society that I didn’t realize were harmful and stigmatizing to other people.

I’m working on learning to say “I’m sorry, you’re right, and let me learn from this” and trying to do better in the future, living up to my statement that I’m going to learn from that moment.

It can absolutely be done. It desperately needs to be done, by all of us.

We can course-correct, whether it’s in a one on one conversation, something we see in a small social network in social media, or even in a large room at a conference.

I still remember and appreciate greatly when I flagged that a diabetes joke was made at a conference on stage over four years ago. Upon hearing the joke, I noted that half the room laughed; and that it wasn’t ok. So I spoke up on Twitter, because I was live tweeting from the conference. I didn’t think much would come from it. But it did. Amazingly, it did.

John Wilbanks saw my tweet, realized it wasn’t ok, and instead of tweeting support or agreement (which also would have been great), took an amazing, colossally huge and unexpected step. He literally got up from his seat, went to the microphone, and interrupted the panel that had moved on to other topics. He called out the fact that diabetes was used as a joke a few minutes prior and that it wasn’t ok.

He put on a master class for how to speak up and how to use his power to intervene.

It was incredibly powerful because although the “joke” had gone over most people’s heads and they didn’t think it was a big deal, he brought attention to the fact that it had happened, was hurtful and harmful, and created a moment for reflection for the entire room of hundreds of people.

We need more of this.

When someone flags that they are being stereotyped, stigmatized, being discriminated against – we need to speak up. We need to support them.

It matters not just for today (although it matters incredibly much for today, too) but also for the future.

AI (artificial intelligence) learns from what we teach it, much like our children learn from what we teach and show them. I don’t have kids, but I know what I do and how I behave matters to my nieces and nephews and how they see the future.

We need to understand that AI is learning from what we are doing today, and what we do today matters. It should be enough to want to not be racist, discriminating, stereotyping, and harmful to other people today. But it’s not enough.

The loudest voices are often the ones establishing “normal” for our culture, our children, and the AI systems that may be running much of the world before our children graduate college. We need to speak up to help shape the conversation today, because  what we are doing today is teaching our children, our technology, and is what we’ll get in the future, ten-fold.

And I want the future to look different and be better, for all of us.

What do you see when you think of diabetes? And what are we teaching our children and our technology?

What It Feels Like To Run 100 Miles Or Similar Long Ultramarathons

Sometime in the last year, I decided I wanted to run 100 miles. In part, because I wanted to tackle the complex challenge and problem-solving that is even figuring out how to do it.

My situation as an ultrarunner is slightly atypical: I have type 1 diabetes and need to closely manage insulin levels and glucose levels while running; I have celiac disease so I can only eat 100% gluten free things; and I have exocrine pancreatic insufficiency (EPI) so I need to swallow enzymes with everything that I eat, including when I run. It’s a logistical cornucopia of challenges…which is in part why I wanted to do it. It wouldn’t be half as rewarding if it were easy? Or something like that.

But mainly, I wanted to prove to myself that I can do hard things, even things that most people think I can’t do. No, I can’t produce my own insulin, but I can locomote for 100 miles at one time despite this and the other challenges I have to deal with along the way.

Plus, there’s the “normal” ultrarunning challenges of fueling, hydrating, managing electrolytes, keeping your feet from becoming a ball of blisters, etc.

Ultrarunning is a sport where it generally doesn’t matter how fast you go, and the farther the distance the more of an equalizer it is. I’m a slow runner, and I had trained at an easy slow pace that I planned to run during my race (self-organized). Not having the pressure of time cutoffs would help. I was also curious whether running so slow at the start would possibly help me maintain a more even pace split across the entire run, and whether I could ultimately achieve a reasonable time by keeping consistent slow paces, compared to many I’ve read about who go a bit too fast at the start and end up with wildly different paces at the end. Everyone hurts running an ultra no matter how much you run or walk or both and no matter how fast or slow you go, but I was hoping that more consistent pacing and effort would minimize how terrible everything felt if I could pull that off.

Background

I trained, ran a 50k in June, and resumed training and worked back up to 24 mile long runs and all was going well, until I massively broke a toe and had 6 weeks off. Then I resumed training and re-built back up to running 29 miles, ending around midnight for night-run training. At that point, I had one more long run scheduled (32-ish miles), but decided I would rather skip the last long run and push my 100 mile run up a few weeks to try to beat the impending rainy season that Seattle would eventually get.

The joke was on me. We had 6+ weeks of terrible air quality, which peaked into a two-day stretch of downright “hazardous” (ugh) air quality the two days before my run. Air quality was finally improving overnight before and the morning of my run, thanks in part to the most rain we had gotten in 128 days. Woohoo! So I got to add some wet and cold running challenges to my list of problem-solving that I’d tackle during my run.

Overall, though, my training had gone well, and I had spent enough time planning and prepping that I felt relatively confident. Mostly, confident that no matter how well or long I trained, it was going to hurt. All over. For what felt like forever, and then I still wouldn’t be anywhere near done. And confident that I had planned and prepped to the best of my ability, and that I could figure out how to tackle whatever situations I faced as they came.

How I felt before the race

Aside from having cabin fever from being inside (AQI was too hazardous to go out even with a mask), I felt fairly good in terms of running fitness. I had been tapering, my legs felt fresh, I was fueling and hydrating and everything felt fine. Unfortunately, though, while I managed to escape many taper niggles, I experienced a round of ovulation pain that I don’t get every month but was lucky enough to get this month, for the 3 days prior to my race. (I’m not sure why, but in the last few years after never experiencing ovulation pain, I have started to get ovulation pain similar to period pain and cramps and general icky feelings. My doctor isn’t concerned about it, but it’s unfun, and in this case poorly timed.) So I was a bit grumpy about going into my race in a less-than-perfect state, even though “perfect” state is an ideal and usually there is something wrong, whether it’s a taper niggle or something else.

The thing I was most pleased about was my feet. My broken toe had healed well and hadn’t been giving me any issues. However, after I broke my toe it changed my foot strike or how my feet move in my shoes in a way that caused epic blisters and then I kept getting blisters on top of blisters for several runs. I finally figured out that I needed to try something different, stopped causing new blisters, and the existing blisters healed, peeled off, and went away. So my feet were in great shape, and despite being nervous about the effect of the rain on my feet during my 100 miles, I at least was starting from a “clean slate” with healthy, non-blistered feet.

The start

I set my alarm and woke up and checked air quality. The winds and the start of the rain had blown it absolutely clear, so I was able to head out without a mask for the first time in weeks! (Last time I ran with it for all 8 hours of my long run, which is annoying when you need to fuel every 30 min.)

I wasn’t even a mile in when I had my first problem. I started with a long sleeve shirt and my rain jacket, knowing I’d warm up and want to take it off soon after I started. As I removed my arms from my rain jacket (keeping it zipped around my waist) and shuffled my arms in and out of my running vest, I suddenly felt water hit my feet and looked down. Water was gushing out of my hydration hose! I grabbed it and stuck my finger over the end: the bite valve had flown off somehow while I was getting out of my jacket. Ugh.

Luckily, though, this is where all of my planning and reading of others’ experiences had come in handy. While this had never happened to me, I had read in someone’s blog that this had happened and it took them 20 minutes to find the valve. I had a bright waistlamp and it was getting increasingly lighter outside as the sun rose, so I hoped mine would be easier to spot. I figured it was stuck in my rain jacket sleeve so I worked to check my sleeve and vest for the valve. No go. I looked around and didn’t see it. I turned and walked back a bit, looking for it on and off the trail. No luck. I finally pulled out my phone and called Scott, while still holding my finger over the hydration hose to keep it from leaking out 3 liters of water. While I talked to him and told him I probably needed him to get dressed and bike out a replacement valved to me, I turned around and walked forward again one more time. Aha! Found it. It had flown way to the left side of the trail. I replaced it and breathed a sigh of relief. It had added only 4 minutes to my first mile time.

Well, I thought: that’s one way to keep my early paces slow! I hung up with Scott, and carried on.

The first lap I was very focused on making sure my socks and shoes were in good shape. I am pretty good at gutting it out if I have blisters or foot issues, but that’s not a good strategy when you’re going to cover 99 more miles. So 6 miles into my first lap, I stopped at a bench, took my socks off, and re-lubricated my feet. Later on the way back (this first lap was an out-and-back), I stopped at mile 16 and similarly sat on a rock to re-lubricate and add lamb’s wool to reduce rubbing on the side of my foot.

A picture of Dana Lewis running down the rainy paved trail, with resupply gear (dry shoes, water, fuel) in the foreground of the picture. She's wearing shorts, a rain jacket, and a rain hat. She is smiling and around 12 miles into her eventual 82 mile run).

Yet overall, lap 1 went well. It started raining after about 20 minutes so I ran with my rain hat and rain jacket on (I put it on after my bite valve escapades at mile 1), and intermittently put my hood over my hat and took it off when the rain picked up or lessened, respectively. But it pretty much rained the whole time. Scott met me as planned after my turnaround spot (about 12 miles in) and refilled my hydration pack and I re-packed my vest with snacks, enzymes, and electrolytes and carried on.

At the end of lap 1 (almost 24 miles), I physically felt pretty decent. I had been working to focus on the lap I was in and what I needed to do for the next lap. Nothing else. No thoughts of how many miles I would run or hours it would take. My watch had stopped itself in the rain and canceled the run (argh), so I wasn’t going to have a running total of time throughout the entire run like I wanted. But this might have been a feature, as it kept me from using my watch for that and I set a new lap/run each time I headed out so I could keep an eye on the segment pace, even though I had no idea what the overall pace time really was.

A paved trail picture taken from on the trail. Trees and a river are to the left; more trees line the trail to the right. It is very cloudy, the trail is visibly wet.I went slow the first lap (part of why I was feeling so strong), and I took my time in between laps. I pulled off my socks and shoes. I used hand sanitizer on them to draw some of the water out, then re-lubricated and added Desitin (to continue to help draw water out of my feet and aid in preventing blisters). Then I put on a fresh pair of toe socks and added more lamb’s wool in between key toes that typically are blister-prone. At this stage I had no blisters, and other than wet soggy feet was in good shape! Sitting for 10 minutes for my sock and foot care change chilled me, though, and I was happy to start moving again and warm back up.

The middle

I headed out on lap 2, which similarly went well. This was my “triangle” shaped loop/lap. The only issue I had this lap was that it was the only section of my route where the trail crossed 3 small intersections. Two had lights but one did not. At the intersection without a light, there were no cars so I continued running across the pedestrian crossing. As I stepped out I saw a car whipping around the corner with their head turned looking for cars in the opposite direction. Not sure if they would turn in time to see me, I slammed on my physical brakes. They did turn and see me and stopped in plenty of time, so I continued across the crossing and on the trail. However, that had tweaked my right ankle and it felt sore and weak. Argh. It felt better after a few more minutes, but it intermittently (once every hour or so) would feel weak and sore throughout the rest of my run as a result.

After lap 2, I again sat to remove my socks and shoes, dry my feet, put hand sanitizer on them, re-lubricate, etc. My feet were definitely wet and wrinkly, so I added even more Desitin to my feet. It wasn’t raining super hard but it was a constant hard drizzle that was soaking through to my socks and feet even though there weren’t many puddles (yet). This time, though, I used some reusable hot packs while I sat to change shoes, so I wasn’t as chilled when I left.

Lap 3 (back to an out-and-back route) also went well, and I was starting to realize that I was in surprisingly good physical shape. My feet were intermittently a little bit sore from pounding the ground for hours, but they weren’t constantly annoying like I’ve had on some training runs. I had long surpassed my longest running distance (previously 32 miles; at the end of lap 3 I would reach 52 miles) and longest ever running time. I did develop one or two small blisters, but they didn’t bother me. Usually, I build up huge blisters and they’re a constant annoyance. During my race, maybe thanks to the Desitin etc, I only noticed the blisters (which were fairly tiny) when they popped themselves. I had one on each foot pop and sting for a minute and then not bother me again, which was pleasant! Lap 3 was also when it got dark, so I’d headed out with my double waist lamp. I have two sets of two waist lamps that we strapped to each other; I turn one on and run it out (somewhere around ~3 hours) and then turn the belt around and turn the other lamp on. This lasts me the longest laps I have, even if I was going at walking speed. It’s plenty of light for the paved trail even on the darkest nights, but because it was raining it was cloudy and the city’s light pollution reflected off the clouds so that trail itself was easy to see! So while I only saw a few stars at the end of the night in between patches of cloud, for most of the night the night-running aspects were pretty easy. Dana sits on a bench at a picnic table in a public park. It is dark. She is wearing long rain pants, a rain jacket, and a rain hat and is bent over her bare feet, applying lubrication. It is dark and nighttime, so she has an extra waistlamp on the table illuminating her feet. Other ultrarunning supplies are strewn across the table.

Interestingly regarding my feet, after lap 3 they were still white and wrinkly a bit, but they were definitely drying out. They were much drier than they had been after lap 2, so the combination of hand sanitizer and Desitin was working. I was pleased, and again slathered with more lubricant and Desitin before putting on fresh socks and heading back out for lap 4, which would be a repeat of my “triangle” lap.

Physically, I was mostly ok. My feet weren’t hurting. I had expected my IT bands to get tight and bother my right knee and for my hips and back to start getting sore: my left knee did intermittently hurt some, but it was like a 3/10 annoyance and came and went. Stretching my hip flexors didn’t change the tightness of my IT band, but it was also the least amount of knee pain I’ve ever had when things got tight, so it was very manageable and I didn’t stress about it. It was hard to believe that with the completion of this lap (lap 4) that I’d have finished a 100k (62 miles) and added a few miles to it!

It seemed like the triangle loop wanted to keep things interesting, though. On Lap 4, after I had turned off into the section that has the intersections and the “triangle” part of the loop, my hydration hose made a gurgling noise. I felt the back of my hydration pack, which was rock solid with ice…but no water left. Oops, I thought. I was at mile 6 out of 13. If I kept going forward on my route, it would take me an estimated 4+ miles to get back to the next water fountain. Or I could call and wake up Scott, who had just fallen asleep for his first 2 hour nap overnight (it was around 1am by now), to bring me water, but that would take him 20-30 minutes before reaching me.

It mattered that I didn’t have water. Not just in terms of thirst and hydration, but I also needed water to be able to swallow my electrolyte pills (every 45 minutes) and my fuel (every 30 minutes when I ate a snack) and the digestive enzymes I absolutely require to digest my food since I have EPI. I definitely needed water so that my hydration, fueling, electrolytes, etc. wouldn’t suffer.

I could go back, but I hated to backtrack. It would be a mile back to the previous water fountain, although I wasn’t even sure it would be turned on and working. Mentally, though, I groaned at the thought of “turning around” and finishing the loop in reverse and trying to figure out how many miles I would cut off that loop and how many I’d have to added to my very last loop to make up for it.

Luckily, I realized a better idea. Because I was on the section of the triangle running alongside a road (hence the annoying intersection crossings), the intersections are where the road turned off into various parking lots. Across the road at one of the two intersections with lights was a gas station! I could see it glowing from a quarter of a mile away. I crossed my fingers hoping it would still be open, because I could go inside and buy a bottle of water to hold me over. It was open! I crossed the intersection and went in, grabbed a liter of water, bought it, went outside, and refilled my hydration bladder under the bright lights of the gas station.

A 1-liter wattle bottle held in a hand covered with a blue nitrile gloves.
I’m wearing nitrile gloves to help keep my hands drier and warmer given the cold, endless rain.

I was pretty proud of that solution, especially because it was ~1am and I had been running for 17 hours and was able to troubleshoot and solve that problem on the fly! Without sending it, I also drafted a text to send to Scott near the end of that loop when he’d be awake, to list out which foods and gear I wanted at the next refuel, and to specify what happened and how I solved it and request that I get more water and less ice for the next loop.

(Running out of water was on my list of things I planned for in all of my preparation, so while I had low expectations of my mental capacity as the miles piled up, that likely helped because I had mentally listed out where all the available water fountains were, so I could run my loop mentally forward and backward to figure out where the closest one was. In this case it was a mile behind me; going forward it would have been 4+ miles or more than an hour away. The gas station ended up being 15 minutes from where I realized I was out of water).

Finishing lap 4 was exciting, because I only had 3 laps left to go! I had one more out and back loop, and my father-in-law was driving down in the wee hours of the morning to run part of it with me to keep me company. We hadn’t planned on that all along, but he and Scott had been texting and working it out, so Scott just told me that was the plan and I was thrilled. I was a little bit tired overall, but more energetic than I thought.

The sock change before lap 5 was disappointing, though. After lap 3, my feet had been drying out a little bit. Now after lap 4 they were wet and soft again, like they were after lap 2. The rain had been more constant. I took the time (15-20 min) I needed to dry and treat them with hand sanitizer, lubricant, Desitin, replace fresh toe socks and lambs wool and dry shoes. They weren’t hurting, so I was hoping the light rain would taper off and my feet would dry out again.

The (beginning of the) end

I headed out on to lap 5, buoyed by the thought that I only had ~4 miles ‘til I had company. The rain picked up again (argh) and as my father-in-law met me on the trail with his headlamp and rain gear, he asked if it had been raining this much the whole time. No, I said, and pointed out that it had only been raining hard in 10-20 minute chunks and this one had been going since before I met him so it should lighten up soon. He commented on how energetic and chatty I was. “You’re pretty chatty,” he said, “for 5am!” (I am well-known in both our families for NOT being a morning person). I joked about how impressive it was for me being this chatty not only at 5am but also for it being 22 hours into my run!

Unfortunately, 3 miles into the section he ran with me, it went from annoying hard drizzle to an epic mega downpour. My shoes went from damp from constant hard drizzle to super soaked from top all the way down to the insoles squishing with every step. I was frustrated, because this much rain was also making it hard to use my phone. My phone had an alarm going off every 30 minutes to remind me to fuel; I needed to pull out my phone each time and turn off the very loud alarm (it was effective!) and then open up my spreadsheet and enter what I ate and what electrolytes I took. Then I also had to pull the baggie out of my vest pocket, select out the number of enzyme pills I needed with wet and cold gloved fingers, re-seal the baggie and put it back in my vest, and get out the fuel from the other pocket of my vest and eat it. Even tired, I was managing to fuel successfully and stay on top of my schedule. I was increasingly proud of this.

But the rain and the inability to use my phone when I wanted to was starting to irritate me, in part likely because I was trying not to stress about what the volume of water was doing to my feet. They weren’t actively hurting, but I knew this much water for this long of time could be dangerous and I needed to be careful. It was still downpouring when we reached the turnaround and headed back to his car. I dropped him off at his car and carried on. I was tired, soaked, cold, but physically in great shape otherwise in terms of legs, knees, hips, back etc all holding up and not feeling like i had run ~78+ miles at that point!

I had just eaten another snack and went to press buttons on my pump to give myself some insulin for the snack. It didn’t seem to work. I have a vibration pattern so I can use the pump without seeing it; but the “enter” button was not working. I had been concerned about the volume of water my pump was going to be exposed to and mentally prepared for that, but it was SO disheartening to suddenly feel the pattern of 6+ vibrations followed by an audio beep indicating an error state had been reached on the pump. I cursed to myself, out in the rain after 24 hours of running, knowing what I would find when I pulled my pump out from under my jacket. Sure enough, “button error”, because water had gotten under the buttons and to protect itself, the pump went into a “I won’t do anything” state. That meant that the insulin I needed for my latest snack wasn’t going to happen and any future insulin wasn’t going to happen.

I pulled out my phone and started a text to Scott, explaining that I had a button error and needed him to pull out my backup pump. I told him where it was, told him to put in a new battery and program it with the basal rate that I wanted. I then sent a text saying it was raining a lot and it would be easier if he called me if he needed to talk, because it was so hard to use my phone in the rain. He read the text so I knew he was awake, so I called him and talked to him while I trudged on and he was getting dressed and packing up my replacement pump and the gear I needed for lap 6. Then we hung up and I carried on, grumbling along the way and starting to feel the physical effects of not having enough insulin for the past hour or so.

A picture of a glucose graph from a CGM. The dots are flat in the first hour of the screenshot, then slowly and almost exactly lineary head up and to the right.

My blood glucose levels were rising, but I wasn’t worried about that. I knew once I had replacement insulin my blood sugars would come down nicely. I had prepared for this; there was a “high BG” baggie with supplies ready to go! But the combination of the 25+ hours of rain, the extra hard rain and cold temps from the last several hours, my feet starting to be bothered from the wet soaking, and then on top of it all the chemical feeling of not having insulin going in my body: it was a lot. I really focused on the physical state I was in, evaluating what I wanted to do. I knew that I could fix the cold state (switch to dry clothes; use hot packs) and my blood sugars (new replacement pump, take some inhalable insulin for a faster fix while the new pump insulin would be kicking in within an hour and fixed from there). But my feet were starting to bother me in a way that I wasn’t sure could be fixed with a 20 minute sock change.

Scott biked up to me right as I passed my favorite trail bathroom, the stalwart of my ultra, and had me turn around and head in there to be out of the rain. It was clean, big, had toilet paper, and was well lit and had the door open (wasn’t locked) all night long. I stepped inside the bathroom while Scott parked his bike by the building and whipped out the baggie with the replacement pump. I checked that no one else was in the women’s bathroom and he stepped inside, and impressively (to me) pulled out the baggie that held a garbage bag. I had packed it so I could more easily change clothes in public bathrooms by standing on it and placing my clothes on it so they wouldn’t be on the ground. He instead laid the garbage bag on top of the garbage can lid and set out my dry clothes, helped me out of my wet soaked rain jacket, hat, and shirts, and handed me my dry shirts followed by some hot packs. He gave me a giant one and told me to stuff it down my shirt, which I did. I took some inhalable insulin (which hits in about 15 minutes), then held the smaller hot packs in my hands while he was pulling out the bag with my replacement pump. I rewound and primed the pump with my existing reservoir and tubing, then reconnected it to my pump site and primed it. That problem (lack of insulin) was now solved, and I knew that my blood glucose would come back down to target over the next hour.

Next up, I could walk/run (or walk) the remaining 1.5 miles back to my normal turn around point, which was a table under a park awning that was relatively dry. I knew that I needed to be warmer and stay dry, and although I had dry clothes on now, I wasn’t sure that sitting outside even with hot packs while I tried to address my feet would warm me up. I told Scott that I wanted to go back to the house (thinking I’d walk the ~1.5 miles to the house). Then I could dry out my feet, get warm, and go back out if I wanted to continue. But I had a hunch I didn’t want to continue. My feet were feeling like they were getting to be in a not-good state from the level of water they had retained after 25 hours, despite all the excellent foot care.

I thought about it and realized that I was satisfied with running 82 miles. I was in otherwise decent physical shape and energy, I had been nailing my electrolytes and fueling and blood sugars the entire run. I had successfully run overnight; more than 24 hours; and by far (2.6x) the longest distance I had ever run. I could keep running to 100 miles (about 18 more miles), but no one cared if I did. I didn’t have to prove anything to anyone, including myself. I had planned, strategized, and executed above and beyond what I had thought was possible, both in terms of physical and mental performance. I had no major injuries, and I wanted to keep it that way. I knew I had the willpower and persistence to keep going; I was stubborn enough to do it; but as the last bit of icing on top of my ultramarathon cake, I wanted to have the mental strength to decide to stop where I was so I wouldn’t create a long-lasting injury in the last 18 miles from sheer stubbornness.

So I stopped. I told Scott I would decide for sure after I got home and dried off and warmed up, but that I was pretty sure this would be a stop and not just a pause. Rather than let me walk home in the rain, he insisted I stay in the warm dry bathroom while he biked home and got the car and brought it to the nearest trail entrance, which was about a quarter of a mile away (more good planning on my part!). Once he had gotten in the car and called me, I slowly walked out to meet him at the parking lot, reaching it right as he pulled in. The walk on my feet confirmed to me that they were done. They weren’t exceptionally blistered or injured, but I knew the cumulative water effect and soggy skin would likely lead to some damage if I continued on them. We headed home. I sat down and took off my socks and shoes and sure enough, my feet were wet, white, and very wrinkly and starting to crease. I took a hot shower then dried off, put hand sanitizer on my feet to help dry them out, and laid down with them sticking out of the covers to help them air out. Within a few hours, they had dried out, and showed me some blisters on the bottom of my right foot that were not really bad, but if I had kept going on them, the wet wrinkly tissue would’ve been very prone to more extreme damage. I reflected on the choice to stop and was still happy with my decision.

The 24 hours after I ran 82 miles

After my shower and laying down, I realized that I was (still) in great physical shape. Some parts of me were starting to stiffen up now that I had stopped, but they hadn’t bothered me at all during running. That was my hips that now hurt if I tried to lay on my side but not on my front or my back; and my thighs felt sore when I straightened and bent my legs. I had never even been tempted during my run to take pain meds because I was never overly sore and didn’t have any injuries.

(Note: you shouldn’t take NSAIDs during extreme events due to the risks of overworked kidneys having problems. I had packed Tylenol, which is acetaminophen, in case I needed it for pain management, but specifically did not pack any oral NSAIDs and warned Scott about offering me any. I did pack topical NSAID *gel* which is an extremely low quantity of NSAID compared to even one oral NSAID pill, and I used that once on my shoulder blades during the run. After my run, I waited several hours and made sure my kidneys were fine via hydration before I took any NSAID.)

It is very surprising to me that despite my longest training runs being almost a third of the distance I did, that I ended up in better physical shape at the end than I did during some training runs! This is probably in part due to going even slower (as planned) during my ultra, but I was really pleased. It might have also been due to the fact that I mentally trained for it to hurt really bad and to continue anyway. Again, lots of mental training and prep.

I ended up napping 2 hours after I got home and showered, and then was awake a few more hours and took another one hour nap. I ate several small meals throughout the day and stayed in bed to rest and not stress my feet further, then went to sleep at a normal bedtime and managed to sleep 9.5 hours through the night. Woohoo! I really wasn’t expecting that. I did wake up many times and find myself bending and flexing my knees or my ankles to help me roll over and could feel them being sore, but it wasn’t painful enough to fully wake me up or keep me from falling back to asleep within seconds, so it felt like a fully rested un-broken night of sleep.

The bottoms of my feet felt weird as they dried out, but progressively felt better and felt close to normal (normal meaning as normal as you are with a routine blister on the bottom of your forefoot) by the time I woke up the next morning (24 hours after ending my run). Everything that stiffened up in the first few hours after I stop has been gradually loosening up, so other than my forefeet still being sensitive with blisters, I’m walking around normally again.

The good, the bad, the ugly, and what I wish I had done differently

I had prepared for so much to go wrong, both those things in my control and things out of my control. And I think that’s why it actually didn’t hurt as much or go as wrong as it could have, despite all the variables in play. I nailed my pacing plan, energy levels, hydration levels, fueling intake, electrolyte intake, and enzyme intake.

I had estimated that I would need to take up to ~160 enzymes to cover my fueling. Remember that I stopped at ~25 hours (82 miles) instead of ~32 hours (100 miles) so I took less than that, but still a lot.

I consumed 50 (fifty!!!) snacks, one every 30 minutes, and swallowed multiple enzyme pills each time. I consumed at least 98 enzyme pills (!!!) in this 25 hour time period. I was concerned that my body wouldn’t be able to digest the pills or have some other issue with them, because I have never taken anywhere near this number of pills in a single day. But, it worked, and flawlessly: I had ZERO EPI-related issues and ZERO other gastrointestinal (GI) symptoms. GI symptoms are super common in ultras, even for people without things like EPI, so I’m incredibly thrilled with how well my planning and practicing paid off so I could execute my fueling plan and not have any issues.

My goal had been to take in ~250 calories per hour and ~500 mg of sodium per hour (from both the snacks every 30 min and electrolyte pills every 45 min). I use calories as my rolling metric because while most ultrarunners prioritize carbs, I’m running slower and likely more fat adapted than most people, and also need digestive enzymes no matter what I’m eating so taking small amounts of fat and protein are fine for me. Plus it makes for more interesting running snacks. So using calories as the global running metric of consumption rather than just carbs or fat etc. works for me. I nailed it, and across all 25 hours of my run I averaged 671 mg of sodium per hour and 279 calories per hour. I did have one hour where I somehow dropped low on sodium and felt it, and took an extra electrolyte pill to help catch up. It fixed the “low on sodium” feeling and I didn’t have any issues again. I had slightly more variability toward the end of the run, but that’s just due to the timing of when I logged it into my spreadsheet (due to the wet-phone issues I described earlier) and the auto-calculation on which hour it falls into; overall I still was maintaining the goal levels every hour.

A graph of calorie consumption, sodium consumption, and carb consumption per hour for all 25 hours of the 82 mile run.

(The purple dotted line is carbs, because I was curious about how that level fluctuated given that I didn’t prioritize my run snacks based on carbs at all. I generally seek <20 grams of carbs per snack but have a few that are closer to 30 grams; otherwise <10 or so grams of fat and however many grams of protein I don’t care).

How do I have all this data? I used my macronutrient spreadsheet as I went, selecting the snack I was going to eat from the drop-down list that then pre-populated the rest of the data in the sheet and updated a pivot table that summarized my rolling totals per hour. It was getting increasingly hard to use my phone in the mega downpour rain in the last few hours, which is why the timing of logging them was a little variable and the numbers look a little more bouncy each hour toward the end, but my consumption was still on time thanks to my every 30 minute phone alarms and so the logging was the only thing that varied and I was still above-goal overall although trending downward slightly.

This spreadsheet means I can also summarize my total consumption across 25 hours: I consumed an eye-popping 817 grams of carbs; 365 grams of fat; 136 grams of protein; 16,775 mg of sodium; and 6,979 total calories. That matched the 98+ enzyme pills (and 33 electrolyte pills, which are 210 mg of sodium each and reflected in the overall sodium counts), so I also swallowed >131 pills in the 25 hour time period running. Wow.

It’s common to end up in a calorie deficit due to the hours and miles that an ultra demand of your body, but my watch estimates I burned around 8,000+ calories (maybe an undercount since it stopped itself a few times), so I didn’t have as big of a deficit as I had originally predicted.

There were so many (50!) opportunities to mess up my digestion, and I didn’t mess up once. I’m really proud of that! I also had such a variety of snack types and textures that even though I was never really hungry, I ate my snacks like clock work and didn’t get major palate fatigue or get to the point that I wanted to stop chewing and needed to switch to my backup list of liquid fuel. The only time I slightly felt off was when I did a Snickers for one snack at the end of my lap and then my next snack was hot mashed potatoes – combined, that was 390 calories (one of my top two hours of calorie consumption) and felt like a little too much food, either because of the calories or the volume of mashed potatoes. It was only a minor annoyance, though, and the feeling passed within another 15 minutes and I didn’t have issues with any other combination of snacks. I did get tired of peanut butter pretzel nuggets, because they’re drier than many of my other snacks and took a lot of water to swallow. So I stopped choosing those in lieu of my other snacks and left those as emergency backups.

Looking back, I wish I could have done something differently about my feet, but I don’t think there’s anything else I could have done. I changed socks and into dry shoes at every single lap. I dried them and tried to draw out water with hand sanitizer and Desitin. I lubricated with Squirrel Nut Butter and Desitin, and overall came out with very few blisters compared to my typical shorter long runs (e.g. 25-30 miles). But we did get 0.72 inches of rain in that 24 hour period, and a lot of it was dumped onto my feet in the 4-7am time period. If I’d had a way of knowing 24 hours in advance exactly when the rain was going to let up with enough confidence to delay the run for a day, it turns out it would’ve been drier, but the forecast before I started running was for similar chances of rain all weekend. The laws of feet physics and the timing was just not good, and that was out of my control. I’ll keep researching other strategies for wet feet management, but I think I had done everything I could, did it well, and it just was what it was.

Overall, I can’t think of anything else I would have changed (other than my training, it would have been swell not to have broken my toe and been not weight bearing for 6 weeks!). Fueling, electrolytes, enzymes, blood sugars, pacing, mental game: flawless. I was even picking up the pace and still running and walking 30:90 second intervals, and I think I would have continued to pick up the pace and pushed it to the finish, estimating that I would have come in under 32 hours overall for 100 miles (around a 19 min/mi average pace overall, or a bit under that).

But I chose to stop at 82 miles, and being willing to do that was a huge mental PR, too.

So I’m pleased, proud, and thrilled to have run an 82 mile ultramarathon, and physically and mentally feel better than I would have predicted would be possible after 24 hours.

What it feels like to run (almost) a 100 mile ultramarathon, by Dana M. Lewis on DIYPS.org

Understanding the Difference Between Open Source and DIY in Diabetes

There’s been a lot of excitement (yay!) about the results of the CREATE trial being published in NEJM, followed by the presentation of the continuation results at EASD. This has generated a lot of blog posts, news articles, and discussion about what was studied and what the implications are.

One area that I’ve noticed is frequently misunderstood is how “open source” and “DIY” are different.

Open source means that the source code is openly available to view. There are different licenses with open source; most allow you to also take and reuse and modify the code however you like. Some “copy-left” licenses commercial entities to open-source any software they build using such code. Most companies can and do use open source code, too, although in healthcare most algorithms and other code related to FDA-regulated activity is proprietary. Most open source licenses allow free individual use.

For example, OpenAPS is open source. You can find the core code of the algorithm here, hosted on Github, and read every line of code. You can take it, copy it, use it as-is or modify it however you like, because the MIT license we put on the code says you can!

As an individual, you can choose to use the open source code to “DIY” (do-it-yourself) an automated insulin delivery system. You’re DIY-ing, meaning you’re building it yourself rather than buying it or a service from a company.

In other words, you can DIY with open source. But open source and DIY are not the same thing!

Open source can and is usually is used commercially in most industries. In healthcare and in diabetes specifically, there are only a few examples of this. For OpenAPS, as you can read in our plain language reference design, we wanted companies to use our code as well as individuals (who would DIY with it). There’s at least one commercial company now using ideas from the OpenAPS codebase and our safety design as a safety layer against their ML algorithm, to make sure that the insulin dosing decisions are checked against our safety design. How cool!

However, they’re a company, and they have wrapped up their combination of proprietary software and the open source software they have implemented, gotten a CE mark (European equivalent of FDA approval), and commercialized and sold their AID product to people with diabetes in Europe. So, those customers/users/people with diabetes are benefitting from open source, although they are not DIY-ing their AID.

Outside of healthcare, open source is used far more pervasively. Have you ever used Zoom? Zoom uses open source; you then use Zoom, although not in a DIY way. Same with Firefox, the browser. Ever heard of Adobe? They use open source. Facebook. Google. IBM. Intel. LinkedIn. Microsoft. Netflix. Oracle. Samsung. Twitter. Nearly every product or service you use is built with, depends on, or contains open source components. Often times open source is more commonly used by companies to then provide products to users – but not always.

So, to more easily understand how to talk about open source vs DIY:

  • The CREATE trial used a version of open source software and algorithm (the OpenAPS algorithm inside a modified version of the AndroidAPS application) in the study.
  • The study was NOT on “DIY” automated insulin delivery; the AID system was handed/provided to participants in the study. There was no DIY component in the study, although the same software is used both in the study and in the real world community by those who do DIY it. Instead, the point of the trial was to study the safety and efficacy of this version of open source AID.
  • Open source is not the same as DIY.
  • OpenAPS is open source and can be used by anyone – companies that want to commercialize, or individuals who want to DIY. For more information about our vision for this, check out the OpenAPS plain language reference design.
Venn diagram showing a small overlap between a bigger open source circle and a smaller DIY circle. An arrow points to the overlapping section, along with text of "OpenAPS". Below it text reads: "OpenAPS is open source and can be used DIY. DIY in diabetes often uses open source, but not always. Not all open source is used DIY."

Continuation Results On 48 Weeks of Use Of Open Source Automated Insulin Delivery From the CREATE Trial: Safety And Efficacy Data

In addition to the primary endpoint results from the CREATE trial, which you can read more about in detail here or as published in the New England Journal of Medicine, there was also a continuation phase study of the CREATE trial. This meant that all participants from the CREATE trial, including those who were randomized to the automated insulin delivery (AID) arm and those who were randomized to sensor-augmented insulin pump therapy (SAPT, which means just a pump and CGM, no algorithm), had the option to continue for another 24 weeks using the open source AID system.

These results were presented by Dr. Mercedes J. Burnside at #EASD2022, and I’ve summarized her presentation and the results below on behalf of the CREATE study team.

What is the “continuation phase”?

The CREATE trial was a multi-site, open-labeled, randomized, parallel-group, 24-week superiority trial evaluating the efficacy and safety of an open-source AID system using the OpenAPS algorithm in a modified version of AndroidAPS. Our study found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14 percentage points higher among those who used the open-source AID system (95% confidence interval [CI], 9.2 to 18.8; P<0.001) compared to those who used sensor augmented pump therapy; a difference that corresponds to 3 hours 21 minutes more time spent in target range per day. The system did not contribute to any additional hypoglycemia. Glycemic improvements were evident within the first week and were maintained over the 24-week trial. This illustrates that all people with T1D, irrespective of their level of engagement with diabetes self-care and/or previous glycemic outcomes, stand to benefit from AID. This initial study concluded that open-source AID using the OpenAPS algorithm within a modified version of AndroidAPS, a widely used open-source AID solution, is efficacious and safe. These results were from the first 24-week phase when the two groups were randomized into SAPT and AID, accordingly.

The second 24-week phase is known as the “continuation phase” of the study.

There were 52 participants who were randomized into the SAPT group that chose to continue in the study and used AID for the 24 week continuation phase. We refer to those as the “SAPT-AID” group. There were 42 participants initially randomized into AID who continued to use AID for another 24 weeks (the AID-AID group).

One slight change to the continuation phase was that those in the SAPT-AID used a different insulin pump than the one used in the primary phase of the study (and 18/42 AID-AID participants also switched to this different pump during the continuation phase), but it was a similar Bluetooth-enabled pump that was interoperable with the AID system (app/algorithm) and CGM used in the primary outcome phase.

All 42 participants in AID-AID completed the continuation phase; 6 participants (out of 52) in the SAPT-AID group withdrew. One withdrew from infusion site issues; three with pump issues; and two who preferred SAPT.

What are the results from the continuation phase?

In the continuation phase, those in the SAPT-AID group saw a change in time in range (TIR) from 55±16% to 69±11% during the continuation phase when they used AID. In the SAPT-AID group, the percentage of participants who were able to achieve the target goals of TIR > 70% and time below range (TBR) <4% increased from 11% of participants during SAPT use to 49% during the 24 week AID use in the continuation phase. Like in the primary phase for AID-AID participants; the SAPT-AID participants saw the greatest treatment effect overnight with a TIR difference of 20.37% (95% CI, 17.68 to 23.07; p <0.001), and 9.21% during the day (95% CI, 7.44 to 10.98; p <0.001) during the continuation phase with open source AID.

Those in the AID-AID group, meaning those who continued for a second 24 week period using AID, saw similar TIR outcomes. Prior to AID use at the start of the study, TIR for that group was 61±14% and increased to 71±12% at the end of the primary outcome phase; after the next 6 months of the continuation phase, TIR was maintained at 70±12%. In this AID-AID group, the percentage of participants achieving target goals of TIR >70% and TBR <4% was 52% of participants in the first 6 months of AID use and 45% during the continuation phase. Similarly to the primary outcomes phase, in the continuation phase there was also no treatment effect by age interaction (p=0.39).

The TIR outcomes between both groups (SAPT-AID and AID-AID) were very similar after each group had used AID for 24 weeks (SAPT-AID group using AID for 24 weeks during the continuation phase and AID-AID using AID for 24 weeks during the initial RCT phase).. The adjusted difference in TIR between these groups was 1% (95% CI, -4 to 6; p=-0.67). There were no glycemic outcome differences between those using the two different study pumps (n=69, which was the SAPT-AID user group and 18 AID-AID participants who switched for continuation; and n=25, from the AID-AID group who elected to continue on the pump they used in the primary outcomes phase).

In the initial primary results (first 24 weeks of trial comparing the AID group to the SAPT group), there was a 14 percentage point difference between the groups. In the continuation phase, all used AID and the adjusted mean difference in TIR between AID and the initial SAPT results was a similar 12.10 percentage points (95% CI, p<0.001, SD 8.40).

Similar to the primary phase, there was no DKA or severe hypoglycemia. Long-term use (over 48 weeks, representing 69 person-years) did not detect any rare severe adverse events.

CREATE results from the full 48 weeks on open source AID with both SAPT (control) and AID (intervention) groups plotted on the graph.

Conclusion of the continuation study from the CREATE trial

In conclusion, the continuation study from the CREATE trial found that open-source AID using the OpenAPS algorithm within a modified version of AndroidAPS is efficacious and safe with various hardware (pumps), and demonstrates sustained glycaemic improvements without additional safety concerns.

Key points to takeaway:

  • Over 48 weeks total of the study (6 months or 24 weeks in the primary phase; 6 months/24 weeks in the continuation phase), there were 64 person-years of use of open source AID in the study, compared to 59 person-years of use of sensor-augmented pump therapy.
  • A variety of pump hardware options were used in the primary phase of the study among the SAPT group, due to hardware (pump) availability limitations. Different pumps were also used in the SAPT-AID group during the AID continuation phase, compared to the pumps available in the AID-AID group throughout both phases of trial. (Also, 18/42 of AID-AID participants chose to switch to the other pump type during the continuation phase).
  • The similar TIR results (14 percentage points difference in primary and 12 percentage points difference in continuation phase between AID and SAPT groups) shows durability of the open source AID and algorithm used, regardless of pump hardware.
  • The SAPT-AID group achieved similar TIR results at the end of their first 6 months of use of AID when compared to the AID-AID group at both their initial 6 months use and their total 12 months/48 weeks of use at the end of the continuation phase.
  • The safety data showed no DKA or severe hypoglycemia in either the primary phase or the continuation phases.
  • Glycemic improvements from this version of open source AID (the OpenAPS algorithm in a modified version of AndroidAPS) are not only immediate but also sustained, and do not increase safety concerns.
CREATE Trial Continuation Results were presented at #EASD2022 on 48 weeks of use of open source AID