Understanding the Difference Between Open Source and DIY in Diabetes

There’s been a lot of excitement (yay!) about the results of the CREATE trial being published in NEJM, followed by the presentation of the continuation results at EASD. This has generated a lot of blog posts, news articles, and discussion about what was studied and what the implications are.

One area that I’ve noticed is frequently misunderstood is how “open source” and “DIY” are different.

Open source means that the source code is openly available to view. There are different licenses with open source; most allow you to also take and reuse and modify the code however you like. Some “copy-left” licenses commercial entities to open-source any software they build using such code. Most companies can and do use open source code, too, although in healthcare most algorithms and other code related to FDA-regulated activity is proprietary. Most open source licenses allow free individual use.

For example, OpenAPS is open source. You can find the core code of the algorithm here, hosted on Github, and read every line of code. You can take it, copy it, use it as-is or modify it however you like, because the MIT license we put on the code says you can!

As an individual, you can choose to use the open source code to “DIY” (do-it-yourself) an automated insulin delivery system. You’re DIY-ing, meaning you’re building it yourself rather than buying it or a service from a company.

In other words, you can DIY with open source. But open source and DIY are not the same thing!

Open source can and is usually is used commercially in most industries. In healthcare and in diabetes specifically, there are only a few examples of this. For OpenAPS, as you can read in our plain language reference design, we wanted companies to use our code as well as individuals (who would DIY with it). There’s at least one commercial company now using ideas from the OpenAPS codebase and our safety design as a safety layer against their ML algorithm, to make sure that the insulin dosing decisions are checked against our safety design. How cool!

However, they’re a company, and they have wrapped up their combination of proprietary software and the open source software they have implemented, gotten a CE mark (European equivalent of FDA approval), and commercialized and sold their AID product to people with diabetes in Europe. So, those customers/users/people with diabetes are benefitting from open source, although they are not DIY-ing their AID.

Outside of healthcare, open source is used far more pervasively. Have you ever used Zoom? Zoom uses open source; you then use Zoom, although not in a DIY way. Same with Firefox, the browser. Ever heard of Adobe? They use open source. Facebook. Google. IBM. Intel. LinkedIn. Microsoft. Netflix. Oracle. Samsung. Twitter. Nearly every product or service you use is built with, depends on, or contains open source components. Often times open source is more commonly used by companies to then provide products to users – but not always.

So, to more easily understand how to talk about open source vs DIY:

  • The CREATE trial used a version of open source software and algorithm (the OpenAPS algorithm inside a modified version of the AndroidAPS application) in the study.
  • The study was NOT on “DIY” automated insulin delivery; the AID system was handed/provided to participants in the study. There was no DIY component in the study, although the same software is used both in the study and in the real world community by those who do DIY it. Instead, the point of the trial was to study the safety and efficacy of this version of open source AID.
  • Open source is not the same as DIY.
  • OpenAPS is open source and can be used by anyone – companies that want to commercialize, or individuals who want to DIY. For more information about our vision for this, check out the OpenAPS plain language reference design.
Venn diagram showing a small overlap between a bigger open source circle and a smaller DIY circle. An arrow points to the overlapping section, along with text of "OpenAPS". Below it text reads: "OpenAPS is open source and can be used DIY. DIY in diabetes often uses open source, but not always. Not all open source is used DIY."

More Thoughts And Strategies For Managing Wildfire Smoke And Problematic Air Quality

In 2020 we had a bad wildfire smoke year with days of record-high heat and poor air quality. It was especially problematic in the greater Seattle area and Pacific Northwest (PNW) where most people don’t have air conditioning. I previously wrote about some of our strategies here, such as box fans with furnace filters; additional air purifiers; and n95 masks. All of those are strategies we have continued to use in the following years, and while our big HEPA air purifier felt expensive at the time, it was a good investment and has definitely done what it needs to do.

This year, we got to September 2022 before we had bad wildfire smoke. I had been crossing my fingers and hoped we’d skip it entirely, but nope. Thankfully, we didn’t have the record heat and the smoke at the same time, but we did end up having smoke blowing in from other states, and then a local wildfire 30-40 miles away that has been making things tricky for several days on and off…several different times.

I’ve been training for an ultramarathon, so it’s been frustrating to have to look not only at the weather but also the air quality to determine how/when to run. I don’t necessarily have a medical condition that makes me higher risk to poor air quality (that I know of), but I think there’s some correlation with being allergic to a lot of environmental things (like dust, mold, trees, grass, etc) that makes it so that I also am more sensitive to most people I know to poor air quality.

Tired of wildfire smoke making it hard to exercise easily outdoors

Everyone’s sensitivity is different, but I’ve been figuring out thanks to multiple stretches of up and down AQI that my threshold for masking outside is about 50 AQI. If it gets to be around 100 or above, I don’t want to be walking or running outside, even with a mask. And as it gets above 150 outside, it becomes yucky inside for me, too, even with the doors and windows closed, the vents on our windows taped shut, and air purifiers and box fans etc running. My throat was scratchy and my eyes hurt, and my chest started to feel yucky, too.

It got so bad last week that I took a small, portable mini air purifier that I had bought to help mitigate COVID-19 exposure on planes, and stuck it in front of my face. It noticeably made my throat stop feeling scratchy, so it was clearly cleaning the air to a degree. On the worst days, I’ve been sitting at my desk working with the stream of air blowing in my face, and I’ve also been leaving it turned on and pointed at my face overnight.

This is kind of a subjective, arbitrary “this helps”, but today we ended up being able to quantify how much it helps to have our big air purifier, box fans with furnace filters, smaller air purifier, and the mini air purifier. Scott ordered a small, portable PM2.5 / PM10 monitor to be able to see what the PM2.5 and PM10 levels are in that exact spot, as opposed to relying on IQAir or similar locally reported sensors that only tell us generally how bad things are in our area.

It also turned out to be useful for checking how effective each of our things are.

It turns out that our box fans with furnace filters taped to the back are most effective at fan speed “1” (they all go up to 3), probably because putting it up to 3 is prone to stirring up dust from the floor (despite robot vacuuming multiple times of day) and increasing PM10 levels. A box fan with 2” MERV 10 filter taped to the back doesn’t affect the already-low PM2.5 levels indoors; on fan level 1 the PM10 gets reduced to zero as long as it’s not pointed at the carpet and stirring up dust. So while it doesn’t help with smoke, these fans are good with increasing circulating air (so it feels cooler) and getting rid of the dust and cat hair that I’m allergic to.

The big HEPA air purifier we bought has a connected app that tells us the PM2.5 levels, and our portable PM2.5 monitor confirms that it’s putting out air with a PM2.5 level of 0. Yay! This sits in our kitchen by our front door, so it helps clean the smoky hallway air coming inside.

A cat sticking it's face toward the phone camera. Behind the cat, a portable PM 2.5 / PM 10 air monitor sits on the floor by a door to measure incoming air.

The hallway air is TERRIBLE. The hallway opens directly to the parking garage, and is usually about as smoky as the outdoor air: it only has a single A/C duct for the whole building, which isn’t always running. The stairwell leading outside is a little cleaner than the hallway and outside. (So I’m glad we have our best air purifier situated to take on the air coming in when we open the hallway door). So we won’t be spending time exercising in the hallways, either; with that level of air quality you might as well be outside anyway, because we need to be masked either way.

The other purifier we have is a smaller purifier. I have it sitting on the counter in our bathroom, because the air exchange to outside is really reduced compared to what it should be (and the building management doesn’t seem very interested in trying to figure out how to fix it). That purifier gets PM2.5 down from 4 to 1 ug/m^3, or about a 4x improvement! Which is pretty good, although not quite as good as the big purifier in our kitchen/entry. Since it’s small enough to sit on a desk or bedside table and blow clean air at me where I’m working or sleeping, we decided to order 2 more of these smaller purifiers for my office and our bedroom, since the box fans take care of PM10 but not the PM2.5.

PM2.5 and PM10 readings from the portable monitor, from on top of the air purifier; next to my office; next to a box fan with filter; in the hallway; in the stairwell; and outside. This is roughly in order of best (inside over the air purifier) to worst (hallway and outside; the stairwell is slightly better than the hallway).

Since the portable air quality monitor would be hard to fit inside his mask or his mouth, and impossible to read there, Scott also held up the PM2.5/10 monitor to the exhaust valve on his n95 mask (note: not all our n95 masks our valved but the valved ones are good for wildfire smoke and managing temperature levels inside your mask when exercising) while outside, and the average PM2.5 level there is about half that of the ambient air. Since about half the time he’s breathing in (and the meter is sucking in outside air) and the other half of the time he’s breathing out (so it’s getting the mask-filtered air he inhaled and then exhaled), this suggests that the mask is doing it’s job of reducing PM2.5 levels he’s breathing inside the mask to very low levels (probably about the same as our very clean indoor air).

He also held it over the small air purifier that I’ve been keeping my face over. It, too, reduces PM2.5 down to about 2 – so not as good as the bigger purifiers, but a ~2x improvement over the ~4 in the ambient air that I would otherwise be breathing.

TLDR:

  • Box fans with MERV 10 filters are great for allergens and PM10, but don’t noticeably reduce the PM2.5. Higher MERV filters might do better, but are very expensive, and probably less cost-effective than a purifier with a proper HEPA filter.
  • Small and big air purifiers work well for reducing PM2.5.
  • N95 masks are effective at drastically reducing the PM2.5 you’d be exposed to outside.
  • If you’re like me and are bothered inside when the air quality outside is bad, additional air purifiers (small or big) might help improve your quality of life during these smoky days that we are increasingly getting every year.

Continuation Results On 48 Weeks of Use Of Open Source Automated Insulin Delivery From the CREATE Trial: Safety And Efficacy Data

In addition to the primary endpoint results from the CREATE trial, which you can read more about in detail here or as published in the New England Journal of Medicine, there was also a continuation phase study of the CREATE trial. This meant that all participants from the CREATE trial, including those who were randomized to the automated insulin delivery (AID) arm and those who were randomized to sensor-augmented insulin pump therapy (SAPT, which means just a pump and CGM, no algorithm), had the option to continue for another 24 weeks using the open source AID system.

These results were presented by Dr. Mercedes J. Burnside at #EASD2022, and I’ve summarized her presentation and the results below on behalf of the CREATE study team.

What is the “continuation phase”?

The CREATE trial was a multi-site, open-labeled, randomized, parallel-group, 24-week superiority trial evaluating the efficacy and safety of an open-source AID system using the OpenAPS algorithm in a modified version of AndroidAPS. Our study found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14 percentage points higher among those who used the open-source AID system (95% confidence interval [CI], 9.2 to 18.8; P<0.001) compared to those who used sensor augmented pump therapy; a difference that corresponds to 3 hours 21 minutes more time spent in target range per day. The system did not contribute to any additional hypoglycemia. Glycemic improvements were evident within the first week and were maintained over the 24-week trial. This illustrates that all people with T1D, irrespective of their level of engagement with diabetes self-care and/or previous glycemic outcomes, stand to benefit from AID. This initial study concluded that open-source AID using the OpenAPS algorithm within a modified version of AndroidAPS, a widely used open-source AID solution, is efficacious and safe. These results were from the first 24-week phase when the two groups were randomized into SAPT and AID, accordingly.

The second 24-week phase is known as the “continuation phase” of the study.

There were 52 participants who were randomized into the SAPT group that chose to continue in the study and used AID for the 24 week continuation phase. We refer to those as the “SAPT-AID” group. There were 42 participants initially randomized into AID who continued to use AID for another 24 weeks (the AID-AID group).

One slight change to the continuation phase was that those in the SAPT-AID used a different insulin pump than the one used in the primary phase of the study (and 18/42 AID-AID participants also switched to this different pump during the continuation phase), but it was a similar Bluetooth-enabled pump that was interoperable with the AID system (app/algorithm) and CGM used in the primary outcome phase.

All 42 participants in AID-AID completed the continuation phase; 6 participants (out of 52) in the SAPT-AID group withdrew. One withdrew from infusion site issues; three with pump issues; and two who preferred SAPT.

What are the results from the continuation phase?

In the continuation phase, those in the SAPT-AID group saw a change in time in range (TIR) from 55±16% to 69±11% during the continuation phase when they used AID. In the SAPT-AID group, the percentage of participants who were able to achieve the target goals of TIR > 70% and time below range (TBR) <4% increased from 11% of participants during SAPT use to 49% during the 24 week AID use in the continuation phase. Like in the primary phase for AID-AID participants; the SAPT-AID participants saw the greatest treatment effect overnight with a TIR difference of 20.37% (95% CI, 17.68 to 23.07; p <0.001), and 9.21% during the day (95% CI, 7.44 to 10.98; p <0.001) during the continuation phase with open source AID.

Those in the AID-AID group, meaning those who continued for a second 24 week period using AID, saw similar TIR outcomes. Prior to AID use at the start of the study, TIR for that group was 61±14% and increased to 71±12% at the end of the primary outcome phase; after the next 6 months of the continuation phase, TIR was maintained at 70±12%. In this AID-AID group, the percentage of participants achieving target goals of TIR >70% and TBR <4% was 52% of participants in the first 6 months of AID use and 45% during the continuation phase. Similarly to the primary outcomes phase, in the continuation phase there was also no treatment effect by age interaction (p=0.39).

The TIR outcomes between both groups (SAPT-AID and AID-AID) were very similar after each group had used AID for 24 weeks (SAPT-AID group using AID for 24 weeks during the continuation phase and AID-AID using AID for 24 weeks during the initial RCT phase).. The adjusted difference in TIR between these groups was 1% (95% CI, -4 to 6; p=-0.67). There were no glycemic outcome differences between those using the two different study pumps (n=69, which was the SAPT-AID user group and 18 AID-AID participants who switched for continuation; and n=25, from the AID-AID group who elected to continue on the pump they used in the primary outcomes phase).

In the initial primary results (first 24 weeks of trial comparing the AID group to the SAPT group), there was a 14 percentage point difference between the groups. In the continuation phase, all used AID and the adjusted mean difference in TIR between AID and the initial SAPT results was a similar 12.10 percentage points (95% CI, p<0.001, SD 8.40).

Similar to the primary phase, there was no DKA or severe hypoglycemia. Long-term use (over 48 weeks, representing 69 person-years) did not detect any rare severe adverse events.

CREATE results from the full 48 weeks on open source AID with both SAPT (control) and AID (intervention) groups plotted on the graph.

Conclusion of the continuation study from the CREATE trial

In conclusion, the continuation study from the CREATE trial found that open-source AID using the OpenAPS algorithm within a modified version of AndroidAPS is efficacious and safe with various hardware (pumps), and demonstrates sustained glycaemic improvements without additional safety concerns.

Key points to takeaway:

  • Over 48 weeks total of the study (6 months or 24 weeks in the primary phase; 6 months/24 weeks in the continuation phase), there were 64 person-years of use of open source AID in the study, compared to 59 person-years of use of sensor-augmented pump therapy.
  • A variety of pump hardware options were used in the primary phase of the study among the SAPT group, due to hardware (pump) availability limitations. Different pumps were also used in the SAPT-AID group during the AID continuation phase, compared to the pumps available in the AID-AID group throughout both phases of trial. (Also, 18/42 of AID-AID participants chose to switch to the other pump type during the continuation phase).
  • The similar TIR results (14 percentage points difference in primary and 12 percentage points difference in continuation phase between AID and SAPT groups) shows durability of the open source AID and algorithm used, regardless of pump hardware.
  • The SAPT-AID group achieved similar TIR results at the end of their first 6 months of use of AID when compared to the AID-AID group at both their initial 6 months use and their total 12 months/48 weeks of use at the end of the continuation phase.
  • The safety data showed no DKA or severe hypoglycemia in either the primary phase or the continuation phases.
  • Glycemic improvements from this version of open source AID (the OpenAPS algorithm in a modified version of AndroidAPS) are not only immediate but also sustained, and do not increase safety concerns.
CREATE Trial Continuation Results were presented at #EASD2022 on 48 weeks of use of open source AID

Wondering about the “how” rather than the “why” of autoimmune conditions

I’ve been thinking a lot about stigma, per a previous post of mine, and how I generally react to, learn about, and figure out how to deal with new chronic diseases.

I’ve observed a pattern in my experiences. When I suspect an issue, I begin with research. I read medical literature to find out the basics of what is known. I read a high volume of material, over a range of years, to see what is known and the general “ground truth” about what has stayed consistent over the years and where things might have changed. This is true for looking into causal mechanisms as well as diagnosis and then more importantly to me, management/treatment.

I went down a new rabbit hole of research and most articles were publicly accessible

A lot of times with autoimmune related diseases…the causal mechanism is unknown. There are correlations, there are known risk factors, but there’s not always a clear answer of why things happen.

I realize that I am lucky that my first “thing” (type 1 diabetes) was known to be an autoimmune condition, and that probably has framed my response to celiac disease (6 years later); exocrine pancreatic insufficiency (19+ years after diabetes); and now Graves’ disease (19+ years after diabetes). Why do I think that is lucky? Because when I’m diagnosed with an autoimmune condition, it’s not a surprise that it IS an autoimmune condition. When you have a nicely overactive immune system, it interferes with how your body is managing things. In type 1 diabetes, it eventually makes it so the beta cells in your pancreas no longer produce insulin. In celiac, it makes it so the body has an immune reaction to gluten, and the villi in your small intestine freak out at the microscopic, crumb-level presence of gluten (and if you keep eating gluten, can cause all sorts of damage). In exocrine pancreatic insufficiency, there is possibly either atrophy as a result of the pancreas not producing insulin or other immune-related responses – or similar theories related to EPI and celiac in terms of immune responses. It’s not clear ‘why’ or which mechanism (celiac, T1D, or autoimmune in general) caused my EPI, and not knowing that doesn’t bother me, because it’s clearly linked to autoimmune shenanigans. Now with Graves’ disease, I also know that low TSH and increased thyroid antibodies are causing subclinical hyperthyroidism symptoms (such as occasional minor tremor, increased resting HR, among others) and Graves’ ophthalmology symptoms as a result of the thyroid antibodies. The low TSH and increased thyroid antibodies are a result of my immune system deciding to poke at my thyroid.

All this to say…I typically wonder less about “why” I have gotten these things, in part because the “why” doesn’t change “what” to do; I simply keep gathering new data points that I have an overactive immune system that gives me autoimmune stuff to deal with.

I have contrasted this with a lot of posts I observe in some of the online EPI groups I am a part of. Many people get diagnosed with EPI as a result of ongoing GI issues, which may or may not be related to other conditions (like IBS, which is often a catch-all for GI issues). But there’s a lot of posts wondering “why” they’ve gotten it, seemingly out of the blue.

When I do my initial research/learning on a new autoimmune thing, as I mentioned I do look for causal mechanisms to see what is known or not known. But that’s primarily, I think, to rule out if there’s anything else “new” going on in my body that this mechanism would inform me about. But 3/3 times (following type 1 diabetes, where I first learned about autoimmune conditions), it’s primarily confirmed that I have autoimmune things due to a kick-ass overactive immune system.

What I’ve realized that I often focus on, and most others do not, is what comes AFTER diagnosis. It’s the management (or treatment) of, and living with, these conditions that I want to know more about.

And sadly, especially in the latest two experiences (exocrine pancreatic insufficiency and Graves’ disease), there is not enough known about management and optimization of dealing with these conditions.

I’ve previously documented and written quite a bit (see a summary of all my posts here) about EPI, including my frustrations about “titrating” or getting the dose right for the enzymes I need to take every single time I eat something. This is part of the “management” gap I find in research and medical knowledge. It seems like clinicians and researchers spend a lot of time on the “why” and the diagnosis/starting point of telling someone they have a condition. But there is way less research about “how” to live and optimally manage these things.

My fellow patients (people with lived experiences) are probably saying “yeah, duh, and that’s the power of social media and patient advocacy groups to share knowledge”. I agree. I say that a lot, too. But one of the reasons these online social media groups are so powerful in sharing knowledge is because of the black hole or vacuum or utter absence of research in this space.

And it’s frustrating! Social media can be super powerful because you can learn about many n=1 experiences. If you’re like me, you analyze the patterns to see what might be reproducible and what is worth experimenting in my own n=1. But often, this knowledge stays in the real world. It is not routinely funded, studied, operationalized, and translated in systematic ways back to healthcare providers. When patients are diagnosed, they’re often told the “what” and occasionally the “why” (if it exists), but left to sometimes fall through the cracks in the “how” of optimally managing the new condition.

(I know, I know. I’m working on that, in diabetes and EPI, and I know dozens of friends, both people with lived experiences and researchers who ARE working on this, from diabetes to brain tumors to Parkinson’s and Alzheimer’s and beyond. And while we are moving the needles here, and making a difference, I’m wanting to highlight the bigger issue to those who haven’t previously been exposed to the issues that cause the gaps we are trying to fill!)

In my newest case of Graves’ disease, it presented with subclinical hyperthyroidism. As I wrote here, that for me means the lower TSH and higher thyroid antibodies but in range T3 and T4. In discussion with my physician, we decided to try an antithyroid drug, to try to lower the antibody levels, because the antibody levels are what cause the related eye symptoms (and they’re quite bothersome). The other primary symptom I have is higher resting HR, which is also really annoying, so I’m also hoping it helps with that, too. But the game plan was to start taking this medication every day; and get follow-up labs in about 2 months, because it takes ~6 weeks to see the change in thyroid levels.

Let me tell you, that’s a long time. I get that the medication works not on stored thyroid levels; thus, it impacts the new production only, and that’s why it takes 6 weeks to see it in the labs because that’s how long it takes to cycle through the stored thyroid stuff in your body.

My hope was that within 2-3 weeks I would see a change in my resting HR levels. I wasn’t sure what else to expect, and whether I’d see any other changes.

But I did.

It was in the course of DAYS, not weeks. It was really surprising! I immediately started to see a change in my resting HR (across two different wearable devices; a ring and a watch). Within a week, my phone’s health flagged it as a “trend”, too, and pinpointed the day (which it didn’t know) that I had started the new medication based on the change in the trending HR values.

Additionally, some of my eye symptoms went away. Prior to commencing the new medication, I would wake up and my eyes would hurt. Lubricating them (with eye drops throughout the day and gel before bed) helped some, but didn’t really fix the problem. I also had pretty significant red, patchy spots around the outside corner of one of my eyes, and eyelid swelling that would push on my eyeball. 4 days into the new medication, I had my first morning where I woke up without my eyes hurting. The next day it returned, and then I had two days without eye pain. Then I had 3-4 days with the painful eyes. Then….now I’m going on 2 weeks without the eye pain?! Meanwhile, I’m also tracking the eye swelling. It went down to match the eye pain going away. But it comes back periodically. Recently, I commented to Scott that I was starting to observe the pattern that the red/patchy skin at the corner and under my right eye would appear; then the next day the swelling of and above the eyelid would return. After 1-2 days of swelling, it would disappear. Because I’ve been tracking various symptoms, I looked at my data the other day and saw that it’s almost a 6-7 day pattern.

Interesting!

Again, the eye stuff is a result of antibody levels. So now I am curious about the production of antibodies and their timeline, and how that differs from TSH and thyroid hormones, and how they’re impacted with this drug.

None of that is information that is easy to get, so I’m deep in the medical literature trying again to find out what is known, whether this type of pattern is known; if it’s common; or if this level of data, like my within-days impact to resting HR change is new information.

Most of the research, sadly, seems to be on pre-diagnosis or what happens if you diagnose someone but not give them medication in hyperthyroid. For example, I found this systematic review on HRV and hyperthyroid and got excited, expecting to learn things that I could use, but found they explicitly removed the 3 studies that involved treating hyperthyroidism and are only studying what happens when you don’t treat it.

Sigh.

This is the type of gap that is so frustrating, as a patient or person who’s living with this. It’s the gap I see in EPI, where little is known on optimal titration and people don’t get prescribed enough enzymes and aren’t taught how to match their dosing to what they are eating, the way we are taught in diabetes to match our insulin dosing to what we’re eating.

And it matters! I’m working on writing up data from a community survey of people with EPI, many of whom shared that they don’t feel like they have their enzyme dosing well matched to what they are eating, in some cases 5+ years after their diagnosis. That’s appalling, to me. Many people with EPI and other conditions like this fall through the cracks with their doctors because there’s no plan or discussion on what managing optimally looks like; what to change if it’s not optimal for a person; and what to do or who to talk to if they need help managing.

Thankfully in diabetes, most people are supported and taught that it’s not “just” a shot of insulin, but there are more variables that need tracking and managing in order to optimize wellbeing and glucose levels when living with diabetes. But it took decades to get there in diabetes, I think.

What would it be like if more chronic diseases, like EPI and Graves’ disease (or any other hyper/hypothyroid-related diseases), also had this type of understanding across the majority of healthcare providers who treated and supported managing these conditions?

How much better would and could people feel? How much more energy would they have to live their lives, work, play with their families and friends? How much more would they thrive, instead of just surviving?

That’s what I wonder.

Wondering "how" rather than "why" of autimmune conditions, by @DanaMLewis from DIYPS.org

Graves’ Disease, Subclinical Hyperthyroidism, and Everything I Have Learned About It (So Far)

TLDR: I have newly diagnosed Graves’ Disease, I have associated eye stuff (called “Graves’ orbitopathy” or “Graves’ ophthalmopathy” or “thyroid eye disease”), subclinical hyperthyroidism, and a new learning curve. Below is what I’ve learned so far and what I’m still exploring.

As a person with type 1 diabetes (T1D) – which is an autoimmune disease – I am screened yearly for various high-risk related conditions. For example, celiac disease and thyroid issues, because those are fairly common in people with type 1 diabetes. I already have celiac disease (developed ~6 years after I developed T1D), but we have continued to screen every year in my annual blood work for thyroid markers, usually by screening T4 and TSH. Occasionally, T3 and/or TPO antibodies are also screened.

I remember vividly the chortle that my prior endocrinologist made after we diagnosed my celiac disease in college, probably in response to my comment about being frustrated of having “another” thing to deal with in addition to T1D. He chortled and said something like “once you have one (autoimmune thing), you’re likely to have two. Once you have two, you’ll be likely to have three.”

I didn’t like it at the time, and I don’t like it now. However, he’s not wrong. When your immune system has a little extra kick in it and you develop one autoimmune disease, the rates of having another autoimmune thing are increased. Thus, the typical yearly screening in T1D for celiac & thyroid.

I went 6 years between T1D and celiac, then almost 12-13 years to discover I now have exocrine pancreatic insufficiency (EPI). That’s not necessarily an autoimmune thing but may be a side effect of long-term T1D. Regardless, I was still thankful for the long period of time between T1D and celiac, then T1D+celiac and EPI. I was assuming that something else was coming eventually, but that I’d likely have a few years before the shoe dropped.

Nope.

I wasn’t terribly surprised when I scheduled my annual endocrinology appointment and did my annual blood work to find that one of my thyroid values was off. Specifically, my TSH (thyroid stimulating hormone) was low / below normal range. However, my T4 was smack dab in the middle of normal range. I got my blood work back Tuesday and waited for my virtual appointment on Friday to discuss in detail with my endocrinologist.

Since I’m me, I was curious about the interplay between normal thyroid levels (T4, and I suspected my T3 was likely still in range) but a low TSH value. What did that mean? General consensus seems to define this as “subclinical hyperthyroidism”. It’s not always treated, unless you are older (>65), have osteoporosis or heart disease, or TSH levels are <0.1.

I’m <65, don’t (as far as I know) have osteoporosis or heart disease, and my TSH levels are between 0.1 and 0.4, which is the low end of the normal range. So general treatment guidelines (see this example from the AAFP) suggest treatment isn’t necessarily warranted.

However…there’s more information that factors into the decision making. First, I had my last annual eye exam in October. All was well. Yet in November, I developed really gritty, dry eyes and went in for an appointment. I was diagnosed with dry eyes (gee, thanks!) and recommended to use gel drops at night before bed and regular eye drops during the day as needed. I did end up needing eye drops several times every day.

Then at the end of December or early January, we realized I had exocrine pancreatic insufficiency (EPI). I had been wondering if my dry eyes was related to the lack of digestion and absorption of nutrients, which also influences how my body uses the water content from food. It did seem to get a little better in the following months, because while I still needed the eye gel at night, I eventually moved to several days a week where I didn’t seem to need the eye drops during the day – yay!

However, in February and early March, I started to physically notice a shift in my resting overnight heart rate (HR). My Pebble 2+ HR watch and my Oura ring, both of which measure HR and heart rate variability (HRV), confirmed that both metrics were getting worse. I had a slowly increasing overnight HR and associated decrease in HRV. I am used to fluctuations, because the intensity of my ultrarunning can also influence HR the next day as a signal for whether my body has recovered yet or not. But instead of a day or two of increased numbers, I had an increasing trend line over several weeks, and it started to physically become bothersome. I actually raised the idea of getting my thyroid blood work done early this year, and was about to request the lab work, when after ~6 weeks or so the trend seemed to reverse and things (HR-wise) went back to “normal” for me.

Then I broke my toe in July and the same thing happened, but I chalked it up to sleep disruption from the pain and recovering from the fracture. My HR was continuing to rise even as the pain subsided and my toe was clearly healing. And looking back at my HR data, I can see it actually started to rise at the beginning of July, about two weeks before I broke my toe, so it’s not solely influenced by my broken toe.

As a result of these HR increases (that are noticeable and bothersome because I’m also not sleeping well at night and I physically feel the higher HR during the day), and the ongoing dry/gritty eyes, I suspected that the cause of my “subclinical hyperthyroidism” was Graves’ disease.

I’ve seen estimates that ~30% of people with Graves’ disease have what is called “Graves’ orbitopathy” (and other estimates suggest 20-50%, like this one), so the combination of my ongoing eye symptoms and the low TSH suggested that further lab work assessing various thyroid antibody levels would be able to confirm whether Graves’ disease was the likely source of the subclinical hyperthyroidism.

Therefore, I wasn’t surprised during my virtual visit that my endocrinologist ordered additional labs (repeat of T4 and TSH; adding in T3, TPO antibodies, and TSI (Thyroid Stimulating Immunoglobulin), Thyrotropin Receptor Ab, and Thyroglobulin Ab). Treatment plan, if any, would be based on these results.

I managed to get in that (Friday) afternoon for the repeat lab work, and my results started trickling in by the time I woke up Saturday morning. First, T3, T4, TPO, and TSH came back. T4 was still normal; as I expected, T3 was also normal. TPO antibodies were high, as expected, TSH was still low, as I expected. Saturday night, Thyroglobulin Ab came back high, as expected. Monday, TSI came back high, as expected. Tuesday, my last test result of Thyrotropin Receptor Ab came back, also high as expected.

The summary was: all antibodies high; TSH low; T3/T4 normal.

My endocrinologist messages me Tuesday afternoon confirming mild Graves’ disease with subclinical hyperthyroidism.

The challenge is that I have normal T3/T4 levels. If those were high, we’d treat based on those levels and use those levels coming back into normal range and any change in antibody levels to assess that things were going well.

But the guidelines for subclinical hyperthyroidism don’t really indicate treatment (except on an individual level based on age, other conditions, or undetectable TSH <0.1, as I mentioned).

However, from what I’ve read, the “eye stuff” seems to be driven not by thyroid levels but by the presence of the increased thyroid antibodies. Treatment would possibly bring down the thyroid antibody levels, which might help with the eye disease progression. But not a guarantee. So my doctor left it up to me to decide whether to treat it or not.

Given the ongoing presence of active eye disease (I haven’t been able to wear my contacts for two weeks right now due to swelling/pain in the eyes, plus itching and redness), and the bothersome heart rate feeling, I have decided to try antithyroid medication. I’ll be on a relatively low dose of an “antithyroid” drug, again with the goal of trying to reduce my antibody levels.

This is why I ended up deciding to write this blog post after all: I have not been able to find any clear treatment guidelines for subclinical hyperthyroidism and Graves’ disease with active eye symptoms (from Graves’ orbitopathy). The literature does suggest that treatment to reduce thyroid antibodies even with in-range T3 and T4, targeting a return to normal TSH levels, may be helpful in reducing Graves’ orbitopathy symptoms. This isn’t well known/established enough to have been documented in treatment guidelines, but does seem to occur in many people who are treated.

So hopefully, anyone else with low TSH and high antibodies suggesting Graves’ disease but normal T3 and T4 levels that suggests subclinical hyperthyroidism and also has other symptoms (whether that’s heart rate or other common hyperthyroid symptoms like increased sweating, shaking, heart palpitations, heat intolerance, sleep disturbances) that are bothersome, now have an example of what I chose, given my situation as described above.

I also thought sharing my question list at different stages for my endocrinologist would be helpful. After I saw that I had low TSH and in range T4, and suspected this meant I had subclinical hyperthyroidism from Graves’ disease, given my eye symptoms, the questions I asked my endocrinologist were:

  • What additional lab work did we need to confirm subclinical hyperthyroidism and Graves’ disease as the cause? What additional information or lab work would give us a treatment plan?As expected, he repeated TSH and T4, added T3 and TPO and the other antibody tests described above: TGAb, TRab, TSI. This would confirm subclinical hyperthyroidism and Graves’ as the likely source.

     

  • Do I need treatment, since the guidelines generally don’t suggest treatment with normal T3/T4 and TSH between .1 and .4?Initially he suggested treatment would be an option, and after the repeat and expanded lab work, left it up to my decision. Given my symptoms that are actively bothering me, I’m choosing to try low-dose antithyroid medication.
  • For hyperthyroidism treatment, beta blockers seem to be part of treatment guidelines for managing symptoms in the short-term, since it takes ~6 weeks for antithyroid medication to show up in lab results. Were beta blockers warranted in my case?My endo typically doesn’t like to prescribe beta blockers unless there are extreme symptoms. He gave an example of someone with a T4 (I think) around 10 and extreme visible shaking. He left it up to me, but his opinion was the side effects, such as lethargy, would outweigh the benefits for mild symptoms, so it is better to treat the root cause. I agreed and did not ask for a beta blocker prescription.
  • I also asked if a DEXA scan was warranted to check my bone density.I haven’t had one in over a decade, and celiac and EPI and now Graves’ puts me at possible higher risk of bone density issues. And, since the presence of osteoporosis changes the treatment recommendation for subclinical hyperthyroidism, we agreed it was worth doing. I have it scheduled in a few weeks. My last one over a decade ago was normal.
  • Finally, I asked about my eye care, now that I have a known eye thing (Graves’ orbitopathy). Do I need to get referred to an ophthalmologist, or can I continue to see my existing optometrist for annual eye care (including diabetes eye exam) and contact fittings?My endocrinologist suggested that my optometrist can continue to manage my eye care, unless something changes significantly. Ophthalmologists, based on his response and my research, seem to handle severe eye disease treatments that aren’t likely warranted for me. I’ll probably need supportive eye care (e.g. gel drops, regular eye drops) for now. However, I’m planning to send a note to my eye doctor and flag that I want to talk about Graves’ eye things and a plan for monitoring severity and progression over time, and check whether she’s comfortable supporting me or if she prefers to refer me to someone else. 


After my repeat labs came back, my endocrinologist messaged me to confirm things and ask if I wanted him to send in the prescription as previously discussed. This exchanged answered the additional questions I had at this time:

  • What is the treatment timeline? How soon might I see results?He suggested repeat labs at the 2 month mark. Ideally, we’d see reduced antibody levels and my hope is that my eye symptoms will have also improved and/or I won’t have any additional weeks without being able to wear contacts.

    Given I have a clear impact to my heart rate, I’m hypothesizing that I might see changes to the trend in my heart rate data sooner than 6 weeks – 2 months, so that’ll be interesting to track!

     

  • Side effects?Common side effects with antithyroid drugs are rash/allergic type response, headache, or agranulocytosis. He told me to discontinue and contact the office if I had any of those symptoms.

    He didn’t go into detail, but I’ve read about agranulocytosis and it seems like if you have a fever and strong sore throat, you need to discontinue and probably will have blood work ordered to make sure your white blood cell counts are ok. Don’t google too much on this one as it sounds scary, but it’s also rare – less than 2% of people seem to have this.

     

  • The only question he didn’t answer was whether it makes a difference in efficacy to take the antithyroid drugs at night or in the morning.Probably, the answer is it doesn’t matter, and whatever time you can take it consistently is best. However, I want to optimize and get the best results from taking this, so I’m bummed that there doesn’t seem to be any evidence (let me know if you’ve found anything in medical literature) suggesting how to optimize timing of it. 

So that’s where I am today.

I now have type 1 diabetes, celiac disease, exocrine pancreatic insufficiency, and Graves’ disease (contributing to subclinical hyperthyroidism). It’s possible that we can fix the subclinical hyperthyroidism, and that I won’t need to be on antithyroid medication long-term. However, the data for those of us with Graves’ orbitopathy isn’t super optimistic compared to those without Graves’ eye disease; so I am managing my expectations that managing my thyroid antibody and hormone levels will be an ongoing thing that I get to do along with managing insulin and blood sugars and managing pancreatic enzymes. We’ll see!

New Research on Glycemic Variability Assessment In Exocrine Pancreatic Insufficiency (EPI) and Type 1 Diabetes

I am very excited to share that a new article I wrote was just published, looking at glycemic variability in data from before and after pancreatic enzyme replacement therapy (PERT) was started in someone with type 1 diabetes with newly discovered exocrine pancreatic insufficiency (EPI or PEI).

If you’re not aware of exocrine pancreatic insufficiency, it occurs when the pancreas no longer produces the amount of enzymes necessary to fully digest food. If that occurs, people need supplementary enzymes, known as pancreatic enzyme replacement therapy (PERT), to help them digest their food. (You can read more about EPI here, and I have also written other posts about EPI that you can find at DIYPS.org/EPI.)

But, like MANY medications, when someone with type 1 diabetes or other types of insulin-requiring diabetes starts taking them, there is little to no guidance about whether these medications will change their insulin sensitivity or otherwise impact their blood glucose levels. No guidance, because there are no studies! In part, this may be because of the limited tools available at the time these medications were tested and approved for their current usage. Also this is likely in part because people with diabetes make up a small fraction of the study participants that most of these medications are tested on. If there are any specific studies on the medications in people with diabetes, these studies likely were done before CGM, so little data is available that is actionable.

As a result, the opportunity came up to review someone’s data who happened to have blood glucose data from a continuous glucose monitor (CGM) as well as a log of what was eaten (carbohydrate entries) prior to commencing pancreatic enzyme replacement therapy. The tracking continued after commencing PERT and was expanded to also include fat and protein entries. As a result, there was a useful dataset to compare the impacts of pancreatic enzyme replacement therapy on blood glucose outcomes and specifically, looking at glycemic variability changes!

(You can read an author copy here of the full paper and also see the supplementary material here, and the DOI for the paper is https://doi.org/10.1177/19322968221108414 . Otherwise, below is my summary of what we did and the results!)

In addition to the above background, it’s worth noting that Type 1 diabetes is known to be associated with EPI. In upwards of 40% of people with Type 1 diabetes, elastase levels are lowered, which in other cases is correlated with EPI. However, in T1D, there is some confusion as to whether this is always the case or not. Based on recent discussions with endocrinologists who treat patients with T1D and EPI (and have patients with lowered elastase that they think don’t have EPI), I don’t think there have been enough studies looking at the right things to assess whether people with T1D and lowered elastase levels would benefit from PERT and thus have EPI. More on this in the future!

Because we now have technology such as AID (automated insulin delivery) and CGM, it’s possible to evaluate things beyond simple metrics of “average blood sugar” or “A1c” in response to taking new medications. In this paper, we looked at some basic metrics like average blood sugar and percent time in range (TIR), but we also did quite a few calculations of variables that tell us more about the level of variability in glucose levels, especially in the time frames after meals.

Methods

This person had tracked carb entries through an open source AID system, and so carb entries and BG data were available from before they started PERT. We call this “pre-PERT”, and selected 4 weeks worth of data to exclude major holidays (as diet is known to vary quite a bit during those times). We then compared this to “post-PERT”, the first 4 weeks after the person started PERT. The post-PERT data not only included BGs and carb entries, but also had fat and protein entries as well as PERT data. Each time frame included 13,975 BG data points.

We used a series of open source tools to get the data (Nightscout -> Nightscout Data Transfer Tool -> Open Humans) and process the data (my favorite Unzip-Zip-CSVify-OpenHumans-data.sh script).

All of our code for this paper is open source, too! Check it out here. We analyzed time in range, TIR 70-180, time out of range, TOR >180, time below range, TBR <70 and <54, the number of hyperglycemic excursions >180. We also calculated total daily dose of insulin, average carbohydrate intake, and average carbohydrate entries per day. Then we calculated a series of variability related metrics such as Low Blood Glucose Index (LBGI), High Blood Glucose Index (HBGI), Coefficient of Variation (CV), Standard Deviation (SD), and J_index (which stresses both the importance of the mean level and variability of glycemic levels).

Results

This person already had an above-goal TIR. Standard of care goal for TIR is >70%; before PERT they had 92.12% TIR and after PERT it was 93.70%. Remember, this person is using an open source AID! TBR <54 did not change significantly, TBR <70 decreased slightly, and TOR >180 also decreased slightly.

More noticeably, the total number of unique excursions above 180 dropped from 40 (in the 4 weeks without PERT) to 26 (in 4 weeks when using PERT).

The paper itself has a few more details about average fat, protein, and carb intake and any changes. Total daily insulin was relatively similar, carb intake decreased slightly post-PERT but was trending back upward by the end of the 4 weeks. This is likely an artifact of being careful to adjust to PERT and dose effectively for PERT. The number of meals decreased but the average carb entry per meal increased, too.

What I find really interesting is the assessment we did on variability, overall and looking at specific meal times. The breakfast meal was identical during both time periods, and this is where you can really SEE visible changes pre- and post-PERT. Figure 2 (displayed below), shows the difference in the rate of change frequency. There’s less of the higher rate of changes (red) post-PERT than there is from pre-PERT (blue).

Figure 2 from GV analysis on EPI, showing lower frequency of high rate of change post-PERT

Similarly, figure 3 from the paper shows all glucose data pre- and post-PERT, and you can see the fewer excursions >180 (blue dotted line) in the post-PERT glucose data.

Figure 3 from GV analysis paper on EPI showing lower number of excursions above 180 mg/dL

Table 1 in the paper has all the raw data, and Figure 1 plots the most relevant graphs side by side so you can see pre- and post-PERT before and after after all meals on the left, versus pre and post-PERT before and after breakfast only. Look at TOR >180 and the reduction in post-breakfast levels after PERT! Similarly, HBGI post-PERT after-breakfast is noticeably different than HBGI pre-PERT after-breakfast.

Here’s a look at the HBGI for breakfast only, I’ve highlighted in purple the comparison after breakfast for pre- and post-PERT:

High Blood Glucose Index (HBGI) pre- and post-PERT for breakfast only, showing reduction in post-PERT after breakfast

Discussion

This is a paper looking at n=1 data, but it’s not really about the n=1 here. (See the awesome limitation section for more detail, where I point out it’s n=1, it’s not a clinical study, the person has ‘moderate’ EPI, there wasn’t fat/protein data from pre-PERT, it may not be representative of all people with diabetes with EPI or EPI in general.)

What this paper is about is illustrating the types of analyses that are possible, if only we would capture and analyze the data. There are gaping holes in the scientific knowledge base: unanswered and even unasked questions about what happens to blood glucose with various medications, and this data can help answer them! This data shows minimal changes to TIR but visible and significant changes to post-meal glycemic variability (especially after breakfast!). Someone who had a lower TIR or wasn’t using an open source AID may have more obvious changes in TIR following PERT commencement.

This paper shows several ways we can more easily detect efficacy of new-onset medications, whether it is enzymes for PERT or other commonly used medications for people with diabetes.

For example, we could do a similar study with metformin, looking at early changes in glycemic variability in people newly prescribed metformin. Wouldn’t it be great, as a person with diabetes, to be able to more quickly resolve the uncertainty of “is this even working?!” and not have to suffer through potential side effects for 3-6 months or longer waiting for an A1c lab test to verify whether the metformin is having the intended effects?

Specifically with regards to EPI, it can be hard for some people to tell if PERT “is working”, because they’re asymptomatic, they are relying on lab data for changes in fat soluble vitamin levels (which may take time to change following PERT commencement), etc. It can also be hard to get the dosing “right”, and there is little guidance around titrating in general, and no studies have looked at titration based on macronutrient intake, which is something else that I’m working on. So, having a method such as these types of GV analysis even for a person without diabetes who has newly discovered EPI might be beneficial: GV changes could be an earlier indicator of PERT efficacy and serve as encouragement for individuals with EPI to continue PERT titration and arrive at optimal dosing.

Conclusion

As I wrote in the paper:

It is possible to use glycemic variability to assess changes in glycemic outcomes in response to new-onset medications, such as pancreatic enzyme replacement therapy (PERT) in people with exocrine pancreatic insufficiency (EPI) and insulin-requiring diabetes. More studies should use AID and CGM data to assess changes in glycemic outcomes and variability to add to the knowledge base of how medications affect glucose levels for people with diabetes. Specifically, this n=1 data analysis demonstrates that glycemic variability can be useful for assessing post-PERT response in someone with suspected or newly diagnosed EPI and provide additional data points regarding the efficacy of PERT titration over time.

I’m super excited to continue this work and use all available datasets to help answer more questions about PERT titration and efficacy, changes to glycemic variability, and anything else we can learn. For this study, I collaborated with the phenomenal Arsalan Shahid, who serves as technology solutions lead at CeADAR (Ireland’s Centre for Applied AI at University College Dublin), who helped make this study and paper possible. We’re looking for additional collaborators, though, so feel free to reach out if you are interested in working on similar efforts or any other research studies related to EPI!

Findings from the world’s first RCT on open source AID (the CREATE trial) presented at #ADA2022

September 7, 2022 UPDATEI’m thrilled to share that the paper with the primary outcomes from the CREATE trial is now published. You can find it on the journal site here, or view an author copy here. You can also see a Twitter thread here, if you are interested in sharing the study with your networks.

Example citation:

Burnside, M; Lewis, D; Crocket, H; et al. Open-Source Automated Insulin Delivery in Type 1 Diabetes. N Engl J Med 2022;387:869-81. DOI:10.1056/NEJMoa2203913


(You can also see a previous Twitter thread here summarizing the study results, if you are interested in sharing the study with your networks.)

TLDR: The CREATE Trial was a multi-site, open-labeled, randomized, parallel-group, 24-week superiority trial evaluating the efficacy and safety of an open-source AID system using the OpenAPS algorithm in a modified version of AndroidAPS. Our study found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14 percentage points higher among those who used the open-source AID system (95% confidence interval [CI], 9.2 to 18.8; P<0.001) compared to those who used sensor augmented pump therapy; a difference that corresponds to 3 hours 21 minutes more time spent in target range per day. The system did not contribute to any additional hypoglycemia. Glycemic improvements were evident within the first week and were maintained over the 24-week trial. This illustrates that all people with T1D, irrespective of their level of engagement with diabetes self-care and/or previous glycemic outcomes, stand to benefit from AID. This study concluded that open-source AID using the OpenAPS algorithm within a modified version of AndroidAPS, a widely used open-source AID solution, is efficacious and safe.

The backstory on this study

We developed the first open source AID in late 2014 and shared it with the world as OpenAPS in February 2015. It went from n=1 to (n=1)*2 and up from there. Over time, there were requests for data to help answer the question “how do you know it works (for anybody else)?”. This led to the first survey in the OpenAPS community (published here), followed by additional retrospective studies such as this one analyzing data donated by the community,  prospective studies, and even an in silico study of the algorithm. Thousands of users chose open source AID, first because there was no commercial AID, and later because open source AID such as the OpenAPS algorithm was more advanced or had interoperability features or other benefits such as quality of life improvements that they could not find in commercial AID (or because they were still restricted from being able to access or afford commercial AID options). The pile of evidence kept growing, and each study has shown safety and efficacy matching or surpassing commercial AID systems (such as in this study), yet still, there was always the “but there’s no RCT showing safety!” response.

After Martin de Bock saw me present about OpenAPS and open source AID at ADA Scientific Sessions in 2018, we literally spent an evening at the dinner table drawing the OpenAPS algorithm on a napkin at the table to illustrate how OpenAPS works in fine grained detail (as much as one can do on napkin drawings!) and dreamed up the idea of an RCT in New Zealand to study the open source AID system so many were using. We sought and were granted funding by New Zealand’s Health Research Council, published our protocol, and commenced the study.

This is my high level summary of the study and some significant aspects of it.

Study Design:

This study was a 24-week, multi-centre randomized controlled trial in children (7–15 years) and adults (16–70 years) with type 1 diabetes comparing open-source AID (using the OpenAPS algorithm within a version of AndroidAPS implemented in a smartphone with the DANA-i™ insulin pump and Dexcom G6® CGM), to sensor augmented pump therapy. The primary outcome was change in the percent of time in target sensor glucose range (3.9-10mmol/L [70-180mg/dL]) from run-in to the last two weeks of the randomized controlled trial.

  • This is a LONG study, designed to look for rare adverse events.
  • This study used the OpenAPS algorithm within a modified version of AndroidAPS, meaning the learning objectives were adapted for the purpose of the study. Participants spent at least 72 hours in “predictive low glucose suspend mode” (known as PLGM), which corrects for hypoglycemia but not hyperglycemia, before proceeding to the next stage of closed loop which also then corrected for hyperglycemia.
  • The full feature set of OpenAPS and AndroidAPS, including “supermicroboluses” (SMB) were able to be used by participants throughout the study.

Results:

Ninety-seven participants (48 children and 49 adults) were randomized.

Among adults, mean time in range (±SD) at study end was 74.5±11.9% using AID (Δ+ 9.6±11.8% from run-in; P<0.001) with 68% achieving a time in range of >70%.

Among children, mean time in range at study end was 67.5±11.5% (Δ+ 9.9±14.9% from run-in; P<0.001) with 50% achieving a time in range of >70%.

Mean time in range at study end for the control arm was 56.5±14.2% and 52.5±17.5% for adults and children respectively, with no improvement from run-in. No severe hypoglycemic or DKA events occurred in either arm. Two participants (one adult and one child) withdrew from AID due to frustrations with hardware issues.

  • The pump used in the study initially had an issue with the battery, and there were lots of pumps that needed refurbishment at the start of the study.
  • Aside from these pump issues, and standard pump site/cannula issues throughout the study (that are not unique to AID), there were no adverse events reported related to the algorithm or automated insulin delivery.
  • Only two participants withdrew from AID, due to frustration with pump hardware.
  • No severe hypoglycemia or DKA events occurred in either study arm!
  • In fact, use of open source AID improved time in range without causing additional hypoglycemia, which has long been a concern of critics of open source (and all types of) AID.
  • Time spent in ‘level 1’ and ‘level 2’ hyperglycemia was significantly lower in the AID group as well compared to the control group.

In the primary analysis, the mean (±SD) percentage of time that the glucose level was in the target range (3.9 – 10mmol/L [70-180mg/dL]) increased from 61.2±12.3% during run-in to 71.2±12.1% during the final 2-weeks of the trial in the AID group and decreased from 57.7±14.3% to 54±16% in the control group, with a mean adjusted difference (AID minus control at end of study) of 14.0 percentage points (95% confidence interval [CI], 9.2 to 18.8; P<0.001). No age interaction was detected, which suggests that adults and children benefited from AID similarly.

  • The CREATE study found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14.0 percentage points higher among those who used the open-source AID system compared to those who used sensor augmented pump therapy.
  • This difference reflects 3 hours 21 minutes more time spent in target range per day!
  • For children AID users, they spent 3 hours 1 minute more time in target range daily (95% CI, 1h 22m to 4h 41m).
  • For adult AID users, they spent 3 hours 41 minutes more time in target range daily (95% CI, 2h 4m to 5h 18m).
  • Glycemic improvements were evident within the first week and were maintained over the 24-week trial. Meaning: things got better quickly and stayed so through the entire 24-week time period of the trial!
  • AID was most effective at night.
Difference between control and AID arms overall, and during day and night separately, of TIR for overall, adults, and kids

One thing I think is worth making note of is that one criticism of previous studies with open source AID is regarding the self-selection effect. There is the theory that people do better with open source AID because of self-selection and self-motivation. However, the CREATE study recruited a diverse cohort of participants, and the study findings (as described above) match all previous reports of safety and efficacy outcomes from previous studies. The CREATE study also found that the greatest improvements in TIR were seen in participants with lowest TIR at baseline. This means one major finding of the CREATE study is that all people with T1D, irrespective of their level of engagement with diabetes self-care and/or previous glycemic outcomes, stand to benefit from AID.

This therefore means there should be NO gatekeeping by healthcare providers or the healthcare system to restrict AID technology from people with insulin-requiring diabetes, regardless of their outcomes or experiences with previous diabetes treatment modalities.

There is also no age effect observed in the trail, meaning that the results of the CREATE Trial demonstrated that open-source AID is safe and effective in children and adults with type 1 diabetes. If someone wants to use open source AID, they would likely benefit, regardless of age or past diabetes experiences. If they don’t want to use open source AID or commercial AID…they don’t have to! But the choice should 100% be theirs.

In summary:

  • The CREATE trial was the first RCT to look at open source AID, after years of interest in such a study to complement the dozens of other studies evaluating open source AID.
  • The conclusion of the CREATE trial is that open-source AID using the OpenAPS algorithm within a version of AndroidAPS, a widely used open-source AID solution, appears safe and effective.
  • The CREATE trial found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14.0 percentage points higher among those who used the open-source AID system compared to those who used sensor augmented pump therapy; a difference that reflects 3 hours 21 minutes more time spent in target range per day.
  • The study recruited a diverse cohort, yet still produced glycemic outcomes consistent with existing open-source AID literature, and that compare favorably to commercially available AID systems. Therefore, the CREATE Trial indicates that a range of people with type 1 diabetes might benefit from open-source AID solutions.

Huge thanks to each and every participant and their families for their contributions to this study! And ditto, big thanks to the amazing, multidisciplinary CREATE study team for their work on this study.


September 7, 2022 UPDATE – I’m thrilled to share that the paper with the primary outcomes from the CREATE trial is now published. You can find it on the journal site here, or like all of the research I contribute to, access an author copy on my research paper.

Example citation:

Burnside, M; Lewis, D; Crocket, H; et al. Open-Source Automated Insulin Delivery in Type 1 Diabetes. N Engl J Med 2022;387:869-81. DOI:10.1056/NE/Moa2203913

Note that the continuation phase study results are slated to be presented this fall at another conference!

Findings from the RCT on open source AID, the CREATE Trial, presented at #ADA2022

A Do-It-Yourself Protocol for Over-The-Counter Enzymes for Suspected Exocrine Pancreatic Insufficiency (EPI) Before Gaining Access to Pancreatic Enzyme Replacement Therapy (PERT)

A humorous side note – the title of this blog, DIYPS, stands for “do-it-yourself pancreas system”, the name I gave my first automated insulin delivery (AID) system, back in 2013. An AID system doesn’t fully replicate all functions of the pancreas, so we evolved from describing it as an artificial pancreas system (APS) to automated insulin delivery (AID). But now that I have exocrine pancreatic insufficiency and am doing quite a bit of DIY around titration of enzymes….the name of this blog feels more appropriate than ever.

After I started writing about exocrine pancreatic insufficiency, I’ve gotten a lot of questions from friends and connections who think they might have EPI. (And they are likely not wrong – there are estimates that as many as 40% of people with type 1 diabetes have lowered elastase levels. Alone, that doesn’t indicate EPI, but if symptomatic and you’ve already ruled out celiac and gastroparesis, it should be (in my opinion) high on the list of things to test for. Ditto for other types of diabetes and anyone with celiac disease.) Some people, though, may have delays in getting doctor’s appointments, and/or clinicians who aren’t (yet) willing to order the elastase or other EPI-related tests without testing for other things first.

This post is for that group of folks, and anyone stumbling across this post who has seen their test results for their fecal elastase testing indicating they have “moderate pancreatic insufficiency” or “severe pancreatic insufficiency” and are wondering what they can do while they wait for their doctor’s appointment.

It’s also for people with EPI who are struggling to afford their pancreatic enzyme replacement therapy (PERT) or are limiting the number or size of meals they eat as a result of the cost of PERT.

A bit of background on why I did the math about OTC enzyme cost and why I had tested them myself

Due to the holidays in December 2021 I had a lag between getting my test results (over Christmas) and then confirming that my doctor would write a prescription for PERT, and then a delay in getting it filled by the pharmacy since they had to order it. One of the things I did during that time was read up a lot about PERT and also look to see if there were any other kinds of enzymes that would be useful to take if my doctor didn’t want to prescribe me PERT. I found out that PERT contains THREE types of enzymes, and together they’re known as pancrelipase. Pancrelipase contains lipase (helps digest fat), protease (helps digest protein), and amylase (helps digest starches and other complex carbohydrates). It’s typically made from ground up pig pancreas, which is one of the reasons that PERT costs so much. Amylase from non-pancreatic sources is not widely available for human consumption, but there are some other ways to make protease and lipase. And it turns out that these standalone enzyme versions, often produced by microbes, are available to buy over the counter.

While waiting for my test to be ordered, I went ahead and ordered a standalone lipase product that is over the counter (OTC). In part, that was because some of the reviews for lipase talked about having EPI and how they were only sensitive to lipase, and so this was a viable and cheaper alternative for them rather than taking PERT with all 3 enzymes, since they didn’t need that. Based on my experience with FODMAPs and trying an enzyme powder to target fructans (which did help me some), it seemed like trying small doses of lipase would help if I did have EPI, and likely wouldn’t hurt even if I did not have EPI.

And it helped. It didn’t reduce all my symptoms, but even minor doses (3000 units of lipase) made a noticeable difference in my symptoms and I got a sense for what meals were more fat and protein-laden than others.

As a result, when my test results came in and I was on the borderline for moderate EPI, I agreed with my HCP that since it likely wouldn’t hurt to take PERT (other than the cost), and it would be obvious if it helped, that I should try PERT.

So having done the tests with OTC (over the counter) lipase was helpful for deciding to take PERT and advocating for my prescription.

And it turns out, wow yes, I do have EPI and do definitely need PERT (more about my first two weeks on PERT here).

And as I wrote here, because I had the OTC lipase sitting around, even after I finally had access to PERT, I eventually titrated my dosing and calculated separate ratios for lipase:fat and protease:protein, so I can decide for every meal or snack whether I need one full PERT (all three enzymes), two PERT, a PERT plus some lipase (and how much), or just a standalone OTC lipase. The cost differs greatly between those options: one PERT might be $9 and a standalone lipase pill around $0.26. You can’t break apart a PERT (e.g. take only half), so adding a few lipase is a cost-effective approach if you don’t need more protease or amylase and the OTC lipase works for you.

Some of the reasons to explore over the counter enzymes with exocrine pancreatic insufficiency or a suspected case of EPI

One interesting thing about one of the main tests (fecal elastase) used to assess EPI is that it is NOT impacted by taking enzymes. Someone who is started on pancreatic enzyme replacement therapy (PERT) can still have an elastase test without stopping taking PERT. So if someone had an inconclusive result or was borderline and started taking PERT, but their doctor wanted to re-test again, the use of PERT would not affect the test. The same goes for other types of enzymes.

I’ve realized that the following groups of people might want to investigate various OTC enzyme options:

  • Someone who has been diagnosed with EPI, but has done careful testing with meals of various sizes (low fat & high protein, high fat & low protein, etc.) to determine that they really only need lipase, may benefit from cheaper lipase-only OTC options.
  • Someone who has a test result for EPI but doesn’t yet have an appointment with their doctor or a prescription for PERT could start taking some OTC enzymes for quicker symptom relief, even if they ultimately want to use PERT for all their enzyme needs once they get their prescription filled.
  • Someone diagnosed with EPI who cannot afford the ideal dose of PERT that they need for their meals and snacks, may want to calculate the out of pocket costs for OTC lipase (not covered by insurance) vs the cost of PERT with or without insurance.
  • Someone who can’t get tested for EPI, but suspects they have EPI, might want to also explore OTC lipase and/or OTC multiple enzyme products.

However, not everyone with EPI will want OTC enzymes. Some people may have great insurance coverage, so their PERT costs them less than $9 a pill. OTC enzymes are not covered by insurance, but I’d still do the math and assess what your standard cost is per pill, because it may surprise you how cheap add-on OTC lipase is vs. your insurance deductible or copay to take additional PERT for larger meals. The other reason some people may not want to take OTC enzymes is the pill burden: OTC doses tend to be smaller, so you usually need to take more pills to cover the same meal as a single, larger PERT.

Picking what enzymes (in general, or specific brands) work for you

I often see a variety of OTC enzyme products recommended in peer groups on social media for EPI. There are no studies that I can find assessing the efficacy of these OTC brands (meaning, how good they are). I would be very cautious when trying different single or multiple enzyme products and keep a careful log of your symptoms from before enzymes as well as symptoms at every meal that you take enzymes, and your bathroom results afterward. This can help you assess OTC enzymes as well as PERT if you get access to it. By having a good log of your symptoms, you can tell if you’re taking enough enzymes (OTC or PERT) or if you’re developing new symptoms (which could be a side effect of whatever brand/type you are taking).

There are multiple brands and sizes of PERT, too, and it’s possible that a filler product or how the PERT is made by one brand doesn’t work well for you. If that’s the case, you can try another brand of PERT.

The same goes for OTC enzymes: it is very possible some types of pills may be made with ingredients that could bother you and cause symptoms themselves. You should definitely be very cautious if you go this route and explore small doses and ensure no side effects (no new symptoms) before increasing any doses.

When I search for lipase, it’s easy to find standalone lipase (here is an example, as an Amazon affiliate link). When I search for protease, it’s more common to find products that are multiple enzymes (e.g. lipase AND protease AND other random things that are “good for digestion”). Personally, I’m very wary of anything OTC that’s described as “digestive enzymes” and prefer to stick to products that only have the ingredients I’m looking for.

A pro-con list for over the counter (OTC) enzymes for EPI. Pros include: lower cost overall and per pill; that you can take smaller quantities of individual enzymes; and you can buy them without a prescription. Cons include: it's not covered by insurance so cost is out of pocket; you have to take more pills with smaller amounts of enzymes; it's not regulatory approved so othere are no studies on efficacy; and providers may not be able to advise for titration.
In diabetes, we often say “your diabetes may vary” (YDMV), indicating that different people can have different experiences.

In EPI, it’s no different – “your digestion may vary” and it’s important to test and record and find what works for you, and to find a balance of reducing or eliminating symptoms with enzymes in a cost-effective way that you can afford.

(PS, if you didn’t see them, I have other posts about EPI at DIYPS.org/EPI including one about PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data!)


You can also contribute to a research study and help us learn more about EPI/PEI – take this anonymous survey to share your experiences with EPI-related symptoms!

Cost calculations of Pancreatic Enzyme Replacement Therapy (PERT) for Exocrine Pancreatic Insufficiency (EPI) and alternative over the counter enzyme products

I previously wrote about my experience figuring out that I have exocrine pancreatic insufficiency (known as EPI or PEI), and also a little bit about starting on pancreatic enzyme replacement therapy (PERT). I talked briefly about the method I was using to figure out the right amount of PERT for me, but I realize that there’s a lot more detail I could provide about how to titrate enzymes in general, and not just PERT.

Some background first, though. When I write about PERT (pancreatic enzyme replacement therapy), I am talking about the FDA-approved class of drugs (called “pancrelipase”) that contain THREE types of enzymes, which the FDA calls “pancreatic enzyme products” or PEPs. Pancrelipase contains lipase (helps digest fat), protease (helps digest protein), and amylase (helps digest starches and other complex carbohydrates). As of 2010, all pancrelipase products that are marketed for EPI must be FDA approved.

Any time I refer (here or in other blog posts) to other enzyme products (either single enzyme or multi-enzyme), I’m referring to over the counter products that are not FDA approved.

Why does FDA approval matter for PEPs? FDA approval is essentially a rubber stamp saying you can trust the FDA to have validated that the companies making these products are making them as they describe them, meaning if they say they have 25,000 units of lipase, they actually have 25,000 units of lipase in them. (And protease and amylase). FDA-approved PEPs used in PERT are made from ground up pig pancreas (really), which is why they’re expensive. There is no generic PEP or PERT. (FDA also has a nice page here explaining the importance of understanding what is and is not an approved PEP/PERT product, and it also explains the brands that are currently approved and the differences between them.) This matters because when you talk about the cost people will probably suggest a “generic” of PERT, but there isn’t one.

However, there are non-FDA-approved over the counter enzyme products. They do exist, but because they have not been vetted by the FDA, I (and you!) should be wary about trusting them when they say they contain X units of lipase or any other enzyme product. Additionally, there are no studies (that I can find) comparing the efficacy between over the counter enzymes (single or multi-enzyme products) and FDA-approved PERT. (If you have found such a study, please leave a comment!)

So does that mean you can’t take them? No, I’m not saying that. What I am saying is you should only try other products with enzymes if you are willing to carefully test and vet FOR YOURSELF whether they work FOR YOU or not. (P.S. – did I mention I’m not a doctor? This is not medical advice; for medical advice, talk with your doctor. Although, doctors may not be aware of the over the counter enzyme options either, and this post might be worth sharing with them as well).

Three goals for optimally titrating enzymes for exocrine pancreatic insufficiency

I have three goals for getting my PERT dose titrated well.

  • First, get enough enzymes (through PERT) to reduce all symptoms.
  • Second, test and assess my lipase:fat and protease:protein ratios so I can figure out how to optimally dose enzymes for new meals of different amounts of fat and protein.
  • Third, optimize for reducing cost with enzymes, through a combination of supplementing PERT with standalone lipase and/or using lipase for fat-only snacks.

Here’s an example of how you might consider vetting over the counter enzyme products, and using them to supplement your FDA-approved (and hopefully insurance-covered) PERT:

As I mentioned earlier, I titrated and found out that my current dose of PERT covers about 30-40 grams of fat and 30 grams of protein. Some individuals only need support in digesting fat (e.g., need only lipase), but I have found that my body also needs support in digesting protein. (However, I don’t appear to need much amylase for carbohydrates.) Therefore I am tracking what amount of fat and protein I am eating with every meal. A 25,000 (lipase) dose of my PERT also contains enough protease to cover 30 grams of protein. Sometimes, I eat higher (>30-40g) fat meals that mean I need more lipase. So I would need two pills of the current dose of PERT, because 25,000 only covers ~30-40g of fat (FOR ME).

But – what if there was another way to get additional lipase without needing a full second pill of PERT, if I don’t need the additional support for more protein for this meal?

Enter over the counter enzyme options. In this example, a single enzyme option for lipase. Here is an example (Amazon affiliate link) to a standalone, single enzyme lipase product that is available as an over the counter product.

I personally have experimented with using standalone over the counter lipase to supplement my PERT dose, for the reason described above (needing more lipase but not necessarily needing more protease or amylase). The reason I would choose standalone lipase has to do with cost.

PERT, being ground up pig pancreas, is expensive. There is no generic for PERT! However, there have been methods to develop lipase from microbes as well as other sources beyond animals. Thus, it is possible to have a standalone source of lipase that is a lot cheaper than PERT. How much cheaper? Well, the bottle linked above when I calculated this was $23.50 for 90 pills. One pill each contains roughly 3,150 units of lipase (again, caveat from above about trusting the amount in over the counter products). That means each pill ($23.50/90 pills) is $0.26 USD, and each 1,000 units of lipase is roughly $0.08.

This math is then helpful to compare the cost of PERT. Depending on the size of prescription PERT, you might see a prescription anywhere from 3,000 to 25,000 to 36,000 units (depending on the brand, they have different amounts, but they are all measured based on units of lipase). Using GoodRx, you can generally compare retail prices of medications, such as this search for 24,000 PERT of one brand (90 capsules) or this search for 25,000 PERT of a different brand (also 90 capsules). Both of them are in the ballpark (for 90 capsules each) of $700-900, so let’s use $800 for 90 capsules for simple math. The per-pill price is $8.89 ($800/90 pills). The per-1,000 unit of lipase cost depends on whether you are using the 24,000 PERT ($8.89/24) or 25,000 PERT ($8.89/25) option, but those are roughly $0.37 and $0.36 per 1000 units of lipase.

So if you were to consume a meal that was ~10g of fat above your current PERT dose, and you didn’t need additional protein support, it would be cheaper to add on additional lipase (at $0.08 per 1000 units of lipase) as a standalone enzyme product instead of an additional PERT (which is, per our estimates, ~$0.36 per 1000 units of lipase). You don’t get to break apart a PERT (It can’t be cut in half, for example), so the per-pill cost is the better comparison. Adding a 3000-ish unit lipase onto your meal to cover an additional 10g of fat costs $0.26, and a second PERT is $8.89.

Therefore, a meal that needs 28,000 lipase is cheaper as 1 PERT and 1 extra standalone lipase rather than 2 PERT.

This of course assumes you have tested the standalone lipase and found that it works for you. I personally have done so and found that standalone lipase of the brand I chose works for this purpose (there are many brands and sizes: again, test what works for you), so I can titrate my meals as PERT+lipase, or even take 1-2 lipase (depending on the fat content) for a snack that’s mainly fat. However, again, a caveat that I personally am sensitive to protein and am tracking everything that I’m eating, so I know my personal math very well. Typical PERT dosing and recommendations is to take “2 or more” for meals or “1-2 for snacks”, but that completely ignores how much fat and protein is in the meals, and might be significantly undertreatment or overtreatment for you.

Why does undertreatment matter? Well, you get symptoms. Those are no fun.

Why does overtreatment matter? Well, you can get constipation. (I haven’t had it, but it also doesn’t sound like fun).
A gif showing a square moving along a spectrum from "too little" to "too much enzyme". Too little enzyme and you have symptoms, not enough and you reduce but don't eliminate symptoms. Enough enzymes and you eliminate symptoms. Too much risks constipation.

My approach was making sure my meals were covered first with prescription PERT, then evaluating additional standalone products that I could use to supplement or replace PERT depending on what I was eating, so I could prioritize reducing symptoms and then for improving the cost required to achieve that.

There are other standalone enzyme products, including products containing multiple enzymes. If you join one of the Facebook groups for EPI, you’ll see people recommencing various names of enzymes for over the counter products. But again, you really should test things and see if they work for you. Read all the ingredients on any product you’re taking. A lot of times you can search for lipase and you’ll get a multiple-enzyme product. And that product may have additional ingredients or fillers that don’t sit well with you. You may even find that one brand of prescription PERT might not work for you, whereas another one does.

My suggestions include:

  • Carefully test any product, whether it’s PERT or over the counter enzymes. Keep a good log of your post-meal symptoms and next-day symptoms (e.g. bathroom results) and try different meals with different amounts of fat and protein.
  • If you have symptoms regularly with a certain amount of enzymes, it could be either that this particular brand (over the counter or even prescription PERT) does not work well for you, OR that you are not taking enough enzymes to cover your needs.
  • If in doubt, talk with your doctor. They may/not have opinions on over the counter products, especially if they haven’t had other patients reporting back what is working for them or not, since there are no studies on those particular brands (and of course, they’re not FDA approved). But with approved PERT, they should be able to give you some more input on how to increase your dose or change your prescription to adjust. Having the data on how much fat and protein you’re eating and what results you’ve been getting could help you (and them) get to a more optimal dose more quickly.

(PS, if you didn’t see them, I have other posts about EPI at DIYPS.org/EPI)

What you should know about starting on Pancreatic Enzyme Replacement Therapy (PERT)

It’s been about two weeks since I started on pancreatic enzyme replacement therapy (PERT) and it’s been really interesting to experience the difference it is making for me.

For context (and you can read more here), I have moderate exocrine pancreatic insufficiency (EPI or PEI), but I have very obvious symptoms following anything I eat for a few hours, as well as next-day bathroom habits. My clinician didn’t think trying PERT would be a problem even though my elastase levels were only borderline low, and it didn’t hurt. It definitely helped in multiple ways.

Here’s what the experience has been like starting on PERT, what I like about it, what I found challenging, what it’s like to scientifically titrate your dosing of PERT, and a handful of random other thoughts.

Here is what I like about Pancreatic Enzyme Replacement Therapy (PERT)

With undiagnosed EPI, for the last almost two years, I would eat food with dread. And not a lot of food (averaging 2 meals a day), because I had to severely limit the kinds of things I was eating to try to reduce my symptoms (with mixed success). With my first few doses of PERT, I ate relatively small, careful and low-FODMAP meals so I could better assess whether PERT was working.

And wow, was it working.

With the first few small (and low-FODMAP, to reduce variables that I was testing) meals, I had an immediate improvement. I didn’t realize until I took PERT how sick I felt every time I ate anything, even when I didn’t have obvious post-meal symptoms of gas, stabbing abdominal pain, or next-day bathroom habits. With PERT, I felt…nothing? Which is apparently how I used to feel after I would eat. There was no sick feeling, no bloating within an hour, and no discomfort for hours. There was no gas after I ate or overnight. In the morning, I didn’t have steatorrhea.

I got braver and experimented with a few bigger meals. In some cases, I still felt not-sick after I ate, but did develop some gas. However, it was significantly reduced.

From tracking the cumulative fat and protein levels in everything I ate, I was able to see that things less than 50 grams of fat and protein (combined) worked exceptionally well with the level of PERT I had started on. PERT has different dosing options, and I had started on a relatively moderate dose. I saw that some of my 70-ish gram meals were fine, but the ones in the 90s definitely needed more PERT.

Even when I could tell I needed more PERT, though, it wasn’t a complete failure. Even for meals with 90+ grams of fat+protein, I had a reduction in feeling sick, way less gas, and improved bathroom habits, even if they weren’t as ideal as what happened when I ate <50g of fat and protein meals.

As I discussed in my previous post, I had felt like a boiling frog where I didn’t really feel good every day, but there was usually nothing obviously wrong (no broken bone, no stabbing pain every day). So it was hard to know what was wrong. Now, taking PERT, I can see a clear difference on the days when the dosing is well-titrated to what I’m eating (no symptoms after I eat, plus I feel a lot better!) compared to when the dosing isn’t optimal (reduced symptoms but still there, sometimes will still feel sick or abdominal discomfort).

I also now have back the lab results of the bloodwork I asked my gastroenterologist to run on fat-soluble vitamins (A, D, E) and iron, to make sure I didn’t have any deficiencies that need addressing. Thankfully, I didn’t – which is probably influenced by the fact that I am absorbing some of what I eat without PERT, but is also likely due to the fact that I take two multivitamins daily plus additional vitamin D supplements. I can imagine that I would have much lower levels without the supplementation, so I’m glad I had built the habit in the last two years of making sure I was taking my vitamins. (Which I wasn’t doing before two years ago consistently, and intuitively was worried about getting the right nutrients given the changes I was making to what I was eating, so that was a good habit to have built up!)

As a pleasant result of taking PERT, I’m also seeing improvements in symptoms that I did not think were correlated with EPI.

For example, in October I developed severely dry eyes, which I’ve never had before. I’ve been using lubricating eye drops several times a day and gel drops at night ever since. After about a week of PERT, I realized that I was waking up in the morning and my first thought wasn’t about putting drops in my eyes because they weren’t painfully dry. And then on days following when my PERT dosing wasn’t optimal (as evidenced by post-meal gas or abdominal discomfort, etc), my eyes are more dry than they are on the other days.

Another thing I’ve noticed is the skin on my face improving. In the last year, I started having more acne breakouts and changes to my skin tone. This, like the eye dryness, has started to noticeably improve in the last week or so (with no other changes to routine or the weather: it’s still winter here!).

What I find challenging about Pancreatic Enzyme Replacement Therapy (PERT)

There’s not a lot of guidance to patients regarding PERT titration (changing dosing levels as needed). My GI doc wrote a script for one size and said we could size up if it wasn’t working. That was it.

Thankfully, I have 19 years of experience with titrating insulin dosing for everything I’m eating, and I have an inclination to use spreadsheets to track things, so I began to take PERT and write down the relevant details of what I was eating (date, timing, what it was, how much fat and protein it had, what PERT dose I took), the result (any post-meal symptoms including timing) and whether it caused steatorrhea or other bathroom-related changes. From this, I was able to very quickly group meals into “wow that worked awesome”, “hmm, this reduced symptoms but it wasn’t perfect”, and “wow that needed more PERT”. For me, those roughly ended up being <50 grams combined of fat and protein (“wow that worked awesome”), around 70 grams (“hmm, this reduced symptoms but it wasn’t perfect on every front”), and more than 90 grams (“wow that needed more PERT”).

Interestingly, a lot of the medical literature I read about PERT indicates that most people are not taking enough. Given my analysis of my own data, that’s currently true. (Personally I’m currently trying to collect more data in each category before I discuss dosing with my clinician, to figure out what dosing or prescription I might need).

I’m only two weeks in, so I can’t yet give solid advice to anyone else taking PERT, but I imagine in the future I would likely feel more confident saying the following to someone else starting on PERT:

  • If you can, write down the date, timing, what you eat, and the nutrients (e.g. fat, protein, and carb) of what you’re eating, and track what symptoms you have when following a meal. Also make sure to note how many and what dose of PERT you took.
  • See if you can group the data between which meals turned out well, which could be improved, and what didn’t work. That may help you discuss with your doctor what level of enzyme you need for what type of meal.

Anecdotally in the EPI communities, people discuss taking 3-4 of the largest dose PERT for meals, vs 1-2 for their snacks. It seems to be very, very individual about what people need. Some people (like me with moderate EPI) have symptoms, others can have severe insufficiency (severe EPI) but have fewer symptoms. As a result, we may need more or less PERT, depending on how our bodies are generating symptoms.

One frustration I have about GI-related conditions, whether that’s those that result in people using the low FODMAP diet or EPI resulting in the need for PERT – and even in the diabetes community where insulin is needed – is that there’s very much a perception of individual blame in the day-to-day operations. If you have symptoms, you probably did something wrong. You ate a high FODMAP thing, or you ‘stacked’ FODMAPs…or for EPI, you didn’t take enough PERT or you ate the wrong thing. In diabetes, you didn’t take enough insulin, or you did it at the wrong time, or you forgot, or you ate too much, or you ate the wrong thing…. There is SO much blame and shame going around, and it’s frustrating to see (and experience).

Having tracked my data for two weeks now, I can see very clear cause and effect in the data: when I feel great, my PERT dosing has been well-matched to what I was eating. When I have some symptoms, the PERT dosing was not-optimal, and sometimes as a result I have a lot of symptoms and don’t feel well. It’s a very clear cause and effect relationship between having sufficient enzymes or not having enough enzymes. I am working to not feel guilty, e.g. I did something ‘wrong’ by choosing the wrong sized meal to go with the PERT dosing, and instead frame it as data that I’m collecting to inform the future prescription I need of PERT.

(My point here is that I don’t like the blame/shame that goes around, and yet, I still feel it, too. I’m trying to remove myself from those patterns of thinking, because it’s not at all helpful.)

It’s helpful instead for me to think “Wow, that was not enough PERT this time! Next time I should take 2 of this dose, or supplement my single PERT with standalone lipase” rather than feel shame or guilt because I ate a “big” meal. This is in part why I’m trying to stay away from thinking and using words like “big” or “small” meal, because the size is so arbitrary, depending on whether you’re looking at volume of food on a plate, thinking about calories, carbohydrates (to take insulin for it), or the fat and protein amounts (to dose PERT for it).

Also, everyone with EPI is likely VERY different from one another, and so my cutoffs of 70 or 90g of fat+protein may be numerically more or less than what someone else needs. (Those who take PERT will also notice I am very careful to not specify what PERT dose my one pill is, because everyone’s needs are different, and I don’t want anyone to accidentally anchor on my dose numbers, because what I need may not be what everyone else needs.)

And I can imagine some folks without EPI reading this with their own perceptions of fat and protein levels thinking judgmental thoughts about the numerical amounts of what I’m eating at different times.

Having to track fat and protein makes me grumpy, for a few reasons. In part, because it’s “one more thing” to track (in addition to general carbohydrate estimates to be able to dose insulin or inform my automated insulin delivery system about what I’m eating). In part, because I set up a spreadsheet to learn from what I’m doing, so I need to count it, input it into my spreadsheet, and then analyze the data later. I know I won’t always need to do this, and eventually I’ll learn intuitively what dosing I need for different types of meals.

But, I now have to remember to get out my PERT, take it “with the first bite” (which I interpret as swallow the PERT and then immediately try to put a bite of food in my mouth so I match the timing of the food with the PERT), then write down the timing of when I took my PERT and input the fat and protein and details of the meal into my spreadsheet…and then remember to also enter carbohydrates into my automated insulin delivery system (which I don’t have to do, but I get better outcomes with a meal announcement so I want to do so. When I’m not working on PERT titration, it doesn’t feel like a burden.).

Although I am grumbling about the titration learning curve and process of figuring out my dosing and what I am eating, I know it’s like any learning curve: I will figure it out soon, and the routine of taking PERT will become as easy as remembering to enter carbs or take insulin for what I’m eating.

And as a short-term benefit and reward of learning to dose PERT for what I’m eating, I feel so much better. Immediately, after every meal, as well as the next day, and I also feel better overall while improving other ‘symptoms’ that I didn’t realize were correlated with my EPI. Hooray!

What it’s like to start on Pancreatic Enzyme Replacement Therapy (PERT)

PS – make sure to check out my other posts about EPI at DIYPS.org/EPI, including the one about  PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency that I built! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data!


You can also contribute to a research study and help us learn more about EPI/PEI – take this anonymous survey to share your experiences with EPI-related symptoms!