New Research on Glycemic Variability Assessment In Exocrine Pancreatic Insufficiency (EPI) and Type 1 Diabetes

I am very excited to share that a new article I wrote was just published, looking at glycemic variability in data from before and after pancreatic enzyme replacement therapy (PERT) was started in someone with type 1 diabetes with newly discovered exocrine pancreatic insufficiency (EPI or PEI).

If you’re not aware of exocrine pancreatic insufficiency, it occurs when the pancreas no longer produces the amount of enzymes necessary to fully digest food. If that occurs, people need supplementary enzymes, known as pancreatic enzyme replacement therapy (PERT), to help them digest their food. (You can read more about EPI here, and I have also written other posts about EPI that you can find at DIYPS.org/EPI.)

But, like MANY medications, when someone with type 1 diabetes or other types of insulin-requiring diabetes starts taking them, there is little to no guidance about whether these medications will change their insulin sensitivity or otherwise impact their blood glucose levels. No guidance, because there are no studies! In part, this may be because of the limited tools available at the time these medications were tested and approved for their current usage. Also this is likely in part because people with diabetes make up a small fraction of the study participants that most of these medications are tested on. If there are any specific studies on the medications in people with diabetes, these studies likely were done before CGM, so little data is available that is actionable.

As a result, the opportunity came up to review someone’s data who happened to have blood glucose data from a continuous glucose monitor (CGM) as well as a log of what was eaten (carbohydrate entries) prior to commencing pancreatic enzyme replacement therapy. The tracking continued after commencing PERT and was expanded to also include fat and protein entries. As a result, there was a useful dataset to compare the impacts of pancreatic enzyme replacement therapy on blood glucose outcomes and specifically, looking at glycemic variability changes!

(You can read an author copy here of the full paper and also see the supplementary material here, and the DOI for the paper is https://doi.org/10.1177/19322968221108414 . Otherwise, below is my summary of what we did and the results!)

In addition to the above background, it’s worth noting that Type 1 diabetes is known to be associated with EPI. In upwards of 40% of people with Type 1 diabetes, elastase levels are lowered, which in other cases is correlated with EPI. However, in T1D, there is some confusion as to whether this is always the case or not. Based on recent discussions with endocrinologists who treat patients with T1D and EPI (and have patients with lowered elastase that they think don’t have EPI), I don’t think there have been enough studies looking at the right things to assess whether people with T1D and lowered elastase levels would benefit from PERT and thus have EPI. More on this in the future!

Because we now have technology such as AID (automated insulin delivery) and CGM, it’s possible to evaluate things beyond simple metrics of “average blood sugar” or “A1c” in response to taking new medications. In this paper, we looked at some basic metrics like average blood sugar and percent time in range (TIR), but we also did quite a few calculations of variables that tell us more about the level of variability in glucose levels, especially in the time frames after meals.

Methods

This person had tracked carb entries through an open source AID system, and so carb entries and BG data were available from before they started PERT. We call this “pre-PERT”, and selected 4 weeks worth of data to exclude major holidays (as diet is known to vary quite a bit during those times). We then compared this to “post-PERT”, the first 4 weeks after the person started PERT. The post-PERT data not only included BGs and carb entries, but also had fat and protein entries as well as PERT data. Each time frame included 13,975 BG data points.

We used a series of open source tools to get the data (Nightscout -> Nightscout Data Transfer Tool -> Open Humans) and process the data (my favorite Unzip-Zip-CSVify-OpenHumans-data.sh script).

All of our code for this paper is open source, too! Check it out here. We analyzed time in range, TIR 70-180, time out of range, TOR >180, time below range, TBR <70 and <54, the number of hyperglycemic excursions >180. We also calculated total daily dose of insulin, average carbohydrate intake, and average carbohydrate entries per day. Then we calculated a series of variability related metrics such as Low Blood Glucose Index (LBGI), High Blood Glucose Index (HBGI), Coefficient of Variation (CV), Standard Deviation (SD), and J_index (which stresses both the importance of the mean level and variability of glycemic levels).

Results

This person already had an above-goal TIR. Standard of care goal for TIR is >70%; before PERT they had 92.12% TIR and after PERT it was 93.70%. Remember, this person is using an open source AID! TBR <54 did not change significantly, TBR <70 decreased slightly, and TOR >180 also decreased slightly.

More noticeably, the total number of unique excursions above 180 dropped from 40 (in the 4 weeks without PERT) to 26 (in 4 weeks when using PERT).

The paper itself has a few more details about average fat, protein, and carb intake and any changes. Total daily insulin was relatively similar, carb intake decreased slightly post-PERT but was trending back upward by the end of the 4 weeks. This is likely an artifact of being careful to adjust to PERT and dose effectively for PERT. The number of meals decreased but the average carb entry per meal increased, too.

What I find really interesting is the assessment we did on variability, overall and looking at specific meal times. The breakfast meal was identical during both time periods, and this is where you can really SEE visible changes pre- and post-PERT. Figure 2 (displayed below), shows the difference in the rate of change frequency. There’s less of the higher rate of changes (red) post-PERT than there is from pre-PERT (blue).

Figure 2 from GV analysis on EPI, showing lower frequency of high rate of change post-PERT

Similarly, figure 3 from the paper shows all glucose data pre- and post-PERT, and you can see the fewer excursions >180 (blue dotted line) in the post-PERT glucose data.

Figure 3 from GV analysis paper on EPI showing lower number of excursions above 180 mg/dL

Table 1 in the paper has all the raw data, and Figure 1 plots the most relevant graphs side by side so you can see pre- and post-PERT before and after after all meals on the left, versus pre and post-PERT before and after breakfast only. Look at TOR >180 and the reduction in post-breakfast levels after PERT! Similarly, HBGI post-PERT after-breakfast is noticeably different than HBGI pre-PERT after-breakfast.

Here’s a look at the HBGI for breakfast only, I’ve highlighted in purple the comparison after breakfast for pre- and post-PERT:

High Blood Glucose Index (HBGI) pre- and post-PERT for breakfast only, showing reduction in post-PERT after breakfast

Discussion

This is a paper looking at n=1 data, but it’s not really about the n=1 here. (See the awesome limitation section for more detail, where I point out it’s n=1, it’s not a clinical study, the person has ‘moderate’ EPI, there wasn’t fat/protein data from pre-PERT, it may not be representative of all people with diabetes with EPI or EPI in general.)

What this paper is about is illustrating the types of analyses that are possible, if only we would capture and analyze the data. There are gaping holes in the scientific knowledge base: unanswered and even unasked questions about what happens to blood glucose with various medications, and this data can help answer them! This data shows minimal changes to TIR but visible and significant changes to post-meal glycemic variability (especially after breakfast!). Someone who had a lower TIR or wasn’t using an open source AID may have more obvious changes in TIR following PERT commencement.

This paper shows several ways we can more easily detect efficacy of new-onset medications, whether it is enzymes for PERT or other commonly used medications for people with diabetes.

For example, we could do a similar study with metformin, looking at early changes in glycemic variability in people newly prescribed metformin. Wouldn’t it be great, as a person with diabetes, to be able to more quickly resolve the uncertainty of “is this even working?!” and not have to suffer through potential side effects for 3-6 months or longer waiting for an A1c lab test to verify whether the metformin is having the intended effects?

Specifically with regards to EPI, it can be hard for some people to tell if PERT “is working”, because they’re asymptomatic, they are relying on lab data for changes in fat soluble vitamin levels (which may take time to change following PERT commencement), etc. It can also be hard to get the dosing “right”, and there is little guidance around titrating in general, and no studies have looked at titration based on macronutrient intake, which is something else that I’m working on. So, having a method such as these types of GV analysis even for a person without diabetes who has newly discovered EPI might be beneficial: GV changes could be an earlier indicator of PERT efficacy and serve as encouragement for individuals with EPI to continue PERT titration and arrive at optimal dosing.

Conclusion

As I wrote in the paper:

It is possible to use glycemic variability to assess changes in glycemic outcomes in response to new-onset medications, such as pancreatic enzyme replacement therapy (PERT) in people with exocrine pancreatic insufficiency (EPI) and insulin-requiring diabetes. More studies should use AID and CGM data to assess changes in glycemic outcomes and variability to add to the knowledge base of how medications affect glucose levels for people with diabetes. Specifically, this n=1 data analysis demonstrates that glycemic variability can be useful for assessing post-PERT response in someone with suspected or newly diagnosed EPI and provide additional data points regarding the efficacy of PERT titration over time.

I’m super excited to continue this work and use all available datasets to help answer more questions about PERT titration and efficacy, changes to glycemic variability, and anything else we can learn. For this study, I collaborated with the phenomenal Arsalan Shahid, who serves as technology solutions lead at CeADAR (Ireland’s Centre for Applied AI at University College Dublin), who helped make this study and paper possible. We’re looking for additional collaborators, though, so feel free to reach out if you are interested in working on similar efforts or any other research studies related to EPI!

A DIY Fuel Enzyme Macronutrient Tracker for Running Ultras (Ultramarathons)

It takes a lot of energy to run ultramarathons (ultras).

To ensure they have enough fuel to complete the run, people usually want to eat X-Y calories per hour, or A-B carbs per hour, while running ultramarathons. It can be hard to know if you’re staying on top of fueling, especially as the hours drag on and your brain gets tired; plus, you can be throwing away your trash as you go so you may not have a pile of wrappers to tell you what you ate.

During training, it may be useful to have a written record of what you did for each run, so you can establish a baseline and work on improving your fueling if that’s something you want to focus on.

For me specifically, I also find it helpful to record what enzyme dosing I am taking, as I have EPI (exocrine pancreatic insufficiency, which you can read more about here) and if I have symptoms it can help me identify where my dosing might have been off from the previous day. It’s not only the amount of enzymes but also the timing that matters, alongside the timing of carbs and insulin, because I have type 1 diabetes, celiac, and EPI to juggle during runs.

Previously, I’ve relied on carb entries to Nightscout (an open source CGM remote monitoring platform which I use for visualizing diabetes data including OpenAPS data) as a record of what I ate, because I know 15g of carbs tracks to a single serving of chili cheese Fritos that are 10g of fat and 2g of protein, and I take one lipase-only and one pancrelipase (multi-enzyme) pill for that; and 21g of carbs is a Honey Stinger Gluten Free Stroopwaffle that is 6g of fat and 1g of protein, and I typically take one lipase-only. You can see from my most recent ultra (a 50k) where I manually took those carb entries and mapped them on to my blood sugar (CGM) graph to visualize what happened in terms of fuel and blood sugar over the course of my ultra.

However, that was “just” a 50k and I’m working toward bigger runs: a 50 mile, maybe a 100k (62 miles), and/or a 100 mile, which means instead of running for 7-8 hours I’ll be running for 12-14 and 24-30(ish) hours! That’s a lot of fuel to need to eat, and to keep track of, and I know from experience my brain starts to get tired of thinking about and eating food around 7 hours. So, I’ll need something better to help me keep track of fuel, enzymes, and electrolytes over the course of longer runs.

I also am planning on being well supported by my “crew” – my husband Scott, who will e-bike around the course of my ultra or my DIY ultra loops and refill my pack with water and fuel. In some cases, with a DIY ultra, he’ll be bringing food from home that I pre-made and he warms up in the microwave.

One of the strategies I want to test is for him to actually hand me the enzymes for the food he’s bringing me. For example, hand me a baggie of mashed potatoes and also hand me the one multi-enzyme (pancrelipase, OTC) pill I need to go with it. That reduces mental effort for me to look up or remember what enzyme amount I take for mashed potatoes; saves me from digging out my baggie of enzymes and having to get the pill out and swallow it, put the baggie away without dropping it, all while juggling the snack in my hands.

He doesn’t necessarily know the counts of enzymes for each fuel (although he could reproduce it, it’s better if I pre-make a spreadsheet library of my fuel options and that helps me both just pick it off a drop down and have an easy reference for him to glance at. He won’t be running 50-100 miles, but he will be waking up every 2-3 hours overnight and that does a number on his brain, too, so it’s easier all around if he can just reference the math I’ve already done!

So, for my purposes: 1) easy tracking of fuel counts for real-time “am I eating according to plan” and 2) retrospective “how did I do overall and should I do something next time” and 3) for EPI and BG analysis (“what should I do differently if I didn’t get the ideal outcome?”), it’s ideal to have a tracking spreadsheet to log my fuel intake.

Here’s what I did to build my ultimate fuel self-tracking self-populating spreadsheet:

First, I created a tab in my spreadsheet as a “Fuel Library”, where I listed out all of my fuel. This ranges from snacks (chili cheese Fritos; Honey Stinger Gluten Free Stroopwaffle; yogurt-covered pretzels, etc.); to fast-acting carbs (e.g. Airhead Minis, Circus Peanuts) that I take for fixing blood sugars; to other snack/treats like chocolate candy bars or cookies; as well as small meals and warm food, such as tomato soup or part of a ham and cheese quesadilla. (All gluten free, since I have celiac. Everything I ever write about is always gluten free!)

After I input the list of snacks, I made columns to input the sodium, calories, fat, protein, and carb counts. I don’t usually care about calories but a lot of recommendations for ultras are calories/hr and carbs/hr. I tend to be lower on the carb side in my regular daily consumption and higher on fat than most people without T1D, so I’m using the calories for ultrarunning comparison to see overall where I’m landing nutrient-wise without fixating on carbs, since I have T1D and what I personally prefer for BG management is likely different than those without T1D.

I also input the goal amount of enzymes. I have three different types of pills: a prescription pancrelipase (I call PERT, which stands for pancreatic enzyme replacement therapy, and when I say PERT I’m referring to the expensive, prescription pancrelipase that’s been tested and studied for safety and efficacy in EPI); an over-the-counter (OTC) lipase-only pill; and an OTC multi-enzyme pancrelipase pill that contains much smaller amounts of all three enzymes (lipase, protease, amylase) than my PERT but hasn’t been tested for safety and efficacy for EPI. So, I have three enzyme columns: Lipase, OTC Pancrelipase, and PERT. For each fuel I calculate which I need (usually one lipase, or a lipase plus a OTC pancrelipase, because these single servings are usually fairly low fat and protein; but for bigger meal-type foods with more protein I may ‘round up’ and choose to take a full PERT, especially if I eat more of it), and input the number in the appropriate column.

Then, I opened another tab on my spreadsheet. I created a row of headers for what I ate (the fuel); time; and then all the macronutrients again. I moved this down to row 3, because I also want to include at the top of the spreadsheet a total of everything for the day.

Example-DIY-Fuel-Enzyme-Tracker-ByDanaMLewis

In Column A, I selected the first cell (A4) for me, then went to Data > Data Validation and clicked on it. It opens this screen, which I input the following – A4 is the cell I’m in for “cell range”, the criteria is “list from a range”, and then I popped over to the tab with my ‘fuel library’ and highlighted the relevant data that I wanted to be in the menu: Food. So that was C2-C52 for my list of food. Make sure “show dropdown list in cell” is marked, because that’s what creates the dropdown in the cell. Click save.

Use the data validation section to choose to show a dropbox in each cell

You’ll want to drag that down to apply the drop-down to all the cells you want. Mine now looked like this, and you can see clicking the dropdown shows the menu to tap on.

Clicking a dropbox in the cell brings up the "menu" of food options from my Fuel Library tab

After I selected from my menu, I wanted column B to automatically put in the time. This gets obnoxious: google sheets has NOW() to put in the current time, but DO NOT USE THIS as the formula updates with the latest time any time you touch the spreadsheet.

I ended up having to use a google script (go to “Extensions” > Apps Script, here’s a tutorial with more detail) to create a function called onEdit() that I could reference in my spreadsheet. I use the old style legacy script editor in my screenshot below.

Older style app script editor for adding scripts to spreadsheet, showing the onEdit() function (see text below in post for what the script is)

Code I used, if you need to copy/paste:

function onEdit(e) {

var rr = e.range;

var ss = e.range.getSheet();

var headerRows = 2;  // # header rows to ignore

if (rr.getRow() <= headerRows) return;

var row = e.range.getRow();

var col = e.range.getColumn();

if(col == 1){

e.source.getActiveSheet().getRange(row,2).setValue(new Date());

}

}

After saving that script (File > Save), I went back to my spreadsheet and put this formula into the B column cells: =IFERROR(onEdit(),””). It fills in the current date/time (because onEdit tells it to if the A cell has been updated), and otherwise sits with a blank until it’s been changed.

Note: if you test your sheet, you’ll have to go back and paste in the formula to overwrite the date/time that gets updated by the script. I keep the formula without the “=” in a cell in the top right of my spreadsheet so I can copy/paste it when I’m testing and updating my sheet. You can also find it in a cell below and copy/paste from there as well.

Next, I wanted to populate my macronutrients on the tracker spreadsheet. For each cell in row 4, I used a VLOOKUP with the fuel name from A4 to look at the sheet with my library, and then use the column number from the fuel library sheet to reference which data element I want. I actually have things in a different order in my fuel library and my tracking sheet; so if you use my template later on or are recreating your own, pay attention to matching the headers from your tracker sheet and what’s in your library. The formula for this cell ended up being “=IFERROR(VLOOKUP(A4,’Fuel Library’!C:K,4, FALSE),””)”, again designed to leave the column blank if column A didn’t have a value, but if it does have a value, to prefill the number from Column 4 matching the fuel entry into this cell. Columns C-J on my tracker spreadsheet all use that formula, with the updated values to pull from the correctly matching column, to pre-populate my counts in the tracker spreadsheet.

Finally, the last thing I wanted was to track easily when I last ate. I could look at column B, but with a tired brain I want something more obvious that tracks how long it’s been. This also is again to maybe help Scott, who will be tasked with helping me stay on top of things, be able to check if I’m eating regularly and encourage me gently or less gently to be eating more as the hours wear on in my ultras.

I ended up creating a cell in the header that would track the last entry from column B. To do this, the formula I found is “INDEX(B4:B,MATCH(143^143,B4:B))”, which checks for the last number in column B starting in B4 and onward. It correctly pulls in the latest timestamp on the list.

Then, in another cell, I created “=NOW()-B2”, which is a good use for the NOW() formula I warned about, because it’s constantly updating every time the sheet gets touched, so that any time I go to update it’ll tell me how long it’s been since between now and the last time I ate.

But, that only updates every time I update the sheet, so if I want to glance at the sheet, it will be only from the last time I updated it… which is not what I want. To fix it, I need to change the autorefresh calculation settings. Go to File > Settings. Click “Calculations” tab, and the first drop down you want to change to be “On change and every minute”.

Under File > Settings there is a "Calculate" tab with a dropdown menu to choose to update on change plus every minute

Now it does what I want, updating that cell that uses the NOW() formula every minute, so this calculation is up to date even when the sheet hasn’t been changed!

However, I also decided I want to log electrolytes in my same spreadsheet, but not include it in my top “when did I last eat” calculator. So, I created column K and inserted the formula IF(A4=”Electrolytes”,””,B4), which checks to see if the Dropdown menu selection was Electrolytes. If so, it doesn’t do anything. If it’s not electrolytes, it repeats the B4 value, which is my formula to put the date and time. Then, I changed B2 to index and match on column K instead of B. My B2 formula now is INDEX(K4:K,MATCH(143^143,K4:K)), because K now has the food-only list of date and time stamps that I want to be tracking in my “when did I last eat” tracker. (If you don’t log electrolytes or don’t have anything else to exclude, you can keep B2 as indexing and matching on column B. But if you want to exclude anything, you can follow my example of using an additional column (my K) to check for things you do want to include and exclude the ones you don’t want. Also, you can hide columns if you don’t want to see them, so column K (or your ‘check for exclusions’ column wherever it ends up) could be hidden from view so it doesn’t distract your brain.

I also added conditional formatting to my tracker. Anytime A2, the time since eaten cell, is between 0-30 minutes, it’s green: indicating I’m on top of my fueling. 30-45 minutes it turns yellow as a warning that it’s time to eat. After 45 minutes, it’ll turn light red as a strong reminder that I’m off schedule.

I kept adding features, such as totaling my sodium consumption per hour, too, so I could track electrolytes+fuel sodium totals. Column L gets the formula =IF(((ABS((NOW()-B4))*1440)<60),F4,””) to check for the difference between the current time and the fuel entry, multiplying it by 1440 to convert to minutes and checking to see that it’s less than 60 minutes. If it is, then it prints the sodium value, and otherwise leaves it blank. (You could skip the ABS part as I was testing current, past, and future values and wanted it to stop throwing errors for future times that were calculated as negatives in the first argument). I then in C2 calculate the sum of those values for the total sodium for that hour, using =SUM(L4:L)

(I thought about tracking the past sodium per hour values to average and see how I did throughout the run on an hourly basis…but so far on my 3 long runs where I’ve used the spreadsheet, the very fact that I am using the tracker and glancing at the hourly total has kept me well on top of sodium and so I haven’t need that yet. However, if I eventually start to have long enough runs where this is an issue, I’ll probably go back and have it calculate the absolute hour sodium totals for retrospective analysis.)

This works great in the Google Sheets app on my phone, which is how I’ll be updating it during my ultras, although Scott can have it open on a browser tab when he’s at home working at his laptop. Every time I go for a long training run, I duplicate the template tab and label it with the date of the run and use it for logging my fueling.

(PS – if you didn’t know, you can rearrange the order of tabs in your sheet, so you can drag the one you want to be actively using to the left. This is useful in case the app closes on your phone and you’re re-opening the sheet fresh, so you don’t have to scroll to re-find the correct tab you want to be using for that run. In a browser, you can either drag and drop the tabs, or click the arrow next to the tab name and select “move left” or “move right”.)

Clicking the arrow to the right of a tab name in google sheets brings up a menu that includes the option to move the tab left or right

Click here to make a copy of my spreadsheet.

If you click to make a copy of a google spreadsheet, it pops up a link confirming you want to make a copy, and also might bring the app script functionality with it. If so, you can click the button to view the script (earlier in the blog post). If it doesn't include the warning about the script, remember to add the script yourself after you make a copy.

Take a look at my spreadsheet after you make a copy (click here to generate a copy if you didn’t use the previous mentioned link), and you’ll note in the README tab a few reminders to modify the fuel library and make sure you follow the steps to ensure that the script is associated with the sheet and validation is updated.

Obviously, you may not need lipase/pancrelipase/PERT and enzyme counts; if you do, your counts of enzymes needed and types of enzyme and quantity of enzymes will need updating; you may not need or want all of these macronutrients; and you’ll definitely be eating different fuel than I am, so you can update it however you like with what you’re eating and what you want to track.

This spreadsheet and the methods for building it can also be used for other purposes, such as tracking wait times or how long it took you to do something, etc.

(If you do find this blog post and use this spreadsheet concept, let me know – I’d love to hear if this is useful for you!)

2022 Strawberry Fields Forever Ultramarathon Race Report Recap

I recently ran my second-ever 50k ultramarathon. This is my attempt to provide a race recap or “race report”, which in part is to help people in the future considering this race and this course. (I couldn’t find a lot of race reports investigating this race!)

It’s also an effort to provide an example of how I executed fueling, enzyme dosing (because I have exocrine pancreatic insufficiency, known as EPI), and blood sugar management (because I have type 1 diabetes), because there’s also not a lot of practical guidance or examples of how people do this. A lot of it is individual, and what works for me won’t necessarily work for anyone, but if anything hopefully it will help other people feel not alone as they work to figure out what works for them!

Context of my running and training in preparation

I wrote quite a bit in this previous post about my training last year for a marathon and my first 50k. Basically, I’m slow, and I also choose to run/walk for my training and racing. This year I’ve been doing 30:60 intervals, meaning I run 30 seconds and walk 60 seconds.

Due to a combination of improved training (and having a year of training last year), as well as now having recognized I was not getting sufficient pancreatic enzymes so that I was not digesting and using the food I was eating effectively, this year has been going really well. I ended up training as far as a practice 50k about 5 weeks out from my race. I did several more mid- to high-20 mile runs as well. I also did a next-day run following my long runs, starting around 3-4 miles and eventually increasing to 8 miles the day after my 50k. The goal of these next-day runs was to practice running on tired legs.

Overall, I think this training was very effective for me. My training runs were easy paced, and I always felt like I could run more after I was done. I recovered well, and the next-day runs weren’t painful and I did not have to truncate or skip any of those planned runs. (Previous years, running always felt hard and I didn’t know what it was like to recover “well” until this year.) My paces also increased to about a minute/mile faster than last year’s easy pace. Again, that’s probably a combination of increased running overall and better digestion and recovery.

Last year I chose to run a marathon and then do a 50k while I was “trained up” for my marathon. This year, I wanted to do a 50k as a fitness assessment on the path to a 50 mile race this fall. I looked for local-ish 50k options that did not have much elevation, and found the Strawberry Fields Forever Ultra.

Why I chose this race, and the basics about this race

The Strawberry Fields Forever Ultra met most of my goal criteria, including that it was around the time that I wanted to run a 50k, so that I had almost 6 months to train and also before it got to be too hot and risked being during wildfire smoke season. (Sadly, that’s a season that now overlaps significantly with the summers here.) It’s local-ish, meaning we could drive to it, although we did spend the night before the race in the area just to save some stress the morning of the race. The race nicely started at 9am, and we drove home in the evening after the race.

The race is on a 10k (6.2 miles) looped course in North Bonneville, Washington, and hosted a 10k event (1 lap), a 50k event (5 laps), and also had 100k (10 laps) or (almost) 100 miles (16 laps). It does have a little bit of elevation – or “little” by ultramarathon standards. The site and all reports describe one hill and net 200 feet of elevation gain and loss. I didn’t love the idea of a 200 foot hill, but thought I could make do. It also describes the course as “grass and dirt” trails. You’ll see a map later where I’ve described some key points on the course, and it’s also worth noting that this course is very “crew-able”. Most people hang out at the start/finish, since it’s “just” a 10k loop and people are looping through pretty frequently. However, if you want to, either for moral or practical support, crew could walk over to various points, or my husband brought his e-bike and biked around between points on the course very easily using a mix of the other trails and actual roads nearby.

The course is well marked. Any turn had a white sign with a black arrow on it and also white arrows drawn on the ground, and there were dozens of little red/pink fluorescent flags marking the course. Any time there was a fork in the path, these flags (usually 2-3 for emphasis, which was excellent for tired brains) would guide you to the correct direction.

The nice thing about this race is it includes the 100 mile option and that has a course limit of 30 hours, which means all the other distances also have this course limit of 30 hours. That’s fantastic when a lot of 50k or 50 mile (or 100k, which is 62 miles) courses might have 12 hour or similar tighter course limits. If you wanted to have a nice long opportunity to cover the distance, with the ability to stop and rest (or nap/sleep), this is a great option for that.

With the 50k, I was aiming to match or ideally beat my time from my first 50k, recognizing that this course is harder given the terrain and hill. However, I think my fitness is higher, so beating that time even with the elevation gain seemed reasonable.

Special conditions and challenges of the 2022 Strawberry Fields Forever Ultramarathon

It’s worth noting that in 2021 there was a record abnormal heat wave due to a “heat dome” that made it 100+ degrees (F) during the race. Yikes. I read about that and I am not willing to run a race when I have not trained for that type of heat (or any heat), so I actually waited until the week before the race to officially sign up after I saw the forecast for the race. The forecast originally was 80 F, then bounced around mid 60s to mid 70s, all of which seemed doable. I wouldn’t mind some rain during the race, either, as rainy 50s and 60s is what I’ve been training in for months.

But just to make things interesting, for the 2022 event the Pacific Northwest got an “atmospheric river” that dumped inches of rain on Thursday..and Friday. Gulp. Scott and I drove down to spend the night Friday night before the race, and it was dumping hard rain. I began to worry about the mud that would be on the course before we even started the race. However, the rain finished overnight and we woke up to everything being wet, but not actively raining. It was actually fairly warm (60s), so even if it drizzled during the race it wouldn’t be chilly.

During the start of the race, the race director said we would get wet and joked (I thought) about practicing our backstroke. Then the race started, and we took off.

My race recap / race report the 2022 Strawberry Fields Forever Ultramarathon

I’ve included a picture below that I was sent a month or so before the race when I asked for a course map, and a second picture because I also asked for the elevation profile. I’ve marked with letters (A-I) points on the course that I’ll describe below for reference, and we ran counterclockwise this year so the elevation map I’ve marked with matching letters where “A” is on the right and “I” is on the left, matching how I experienced the course.

The course is slightly different in the start/finish area, but otherwise is 95% matching what we actually ran, so I didn’t bother grabbing my actual course map from my run since this one was handy and a lot cleaner than my Runkeeper-derived map of the race.

Annotated course map with points A-I
StrawberryFieldsForever-Ultra-Elevation-Profile

My Runkeeper elevation profile of the 50k (5 repeated laps) looked like this:
Runkeeper elevation profile of 5 loops on the Strawberry Fields Forever 50k course

I’ll describe my first experience through the course (Lap 1) in more detail, then a couple of thoughts about the experiences of the subsequent laps, in part to describe fueling and other choices I made.

Lap 1:

We left the start by running across the soccer field and getting on a paved path that hooked around the ballfield and then headed out a gate and up The Hill. This was the one hill I thought was on the course. I ran a little bit and passed a few people who walked on a shallower slope, then I also converted to a walk for the rest of the hill. It was the most crowded race start I’ve done, because there were so many people (150 across the 10k, 50k, 100k, and 100 miler) and such a short distance between the start and this hill. The Hill, as I thought of it, is point A on the course map.

Luckily, heading up the hill there are gorgeous purple wildflowers along the path and mountain views. At the top of the hill there are some benches at the point where we took a left turn and headed down the hill, going down the same elevation in about half a mile so it was longer than the uphill section. This downhill slope (B) was very runnable and gravel covered, whereas going up the hill was more dirt and mud.

At the bottom of the hill, there was a hairpin turn and we turned and headed back up the hill, although not all the way up, and more along a plateau in the side of the hill. The “plateau” is point C on the map. I thought it would be runnable once I got back up the initial hill, but it was mud pit after mud pit, and I would have two steps of running in between mud pits to carefully walk through. It was really frustrating. I ended up texting to my parents and Scott that it was about 1.7 miles of mud (from the uphill, and the plateau) before I got to some gravel that was more easily runnable. Woohoo for gravel! This was a nice, short downhill slope (D) before we flattened out and switched back to dirt and more mud pits.

This was the E area, although it did feel more runnable than the plateau because there were longer stretches between muddy sections.

Eventually, we saw the river and came out from the trail into a parking lot and then jogged over onto the trail that parallels the river for a while. This trail that I thought of as “River Road” (starting around point F) is just mowed grass and is between a sharp bluff drop with opening where people would be down at the river fishing, and in some cases we were running *underneath* fishing lines from the parking spots down to the river! There were a few people who would be walking back and forth from cars to the river, but in general they were all very courteous and there was no obstruction of the trail. Despite the mowed grass aspect of the trail, this stretch physically and psychologically felt easier because there were no mud pits for 90% of it. Near the end there were a few muddy areas right about the point we hopped back over into the road to connect up a gravel road for a short spurt.

This year, the race actually put a bonus aid station out here. I didn’t partake, but they had a tent up with two volunteers who were cheerful and kind to passing runners, and it looked like they had giant things of gatorade or water, bottled water, and some sugared soda. They probably had other stuff, but that’s just what I saw when passing.

After that short gravel road bit, we turned back onto a dirt trail that led us to the river. Not the big river we had been running next to, but the place where the Columbia River overflowed the trail and we had to cross it. This is what the race director meant by practicing our backstroke.

You can see a video in this tweet of how deep and far across you had to get in this river crossing (around point G, but hopefully in future years this isn’t a point of interest on the map!!)

Showing a text on my watch of my BIL warning me about a river crossing

Coming out of the river, my feet were like blocks of ice. I cheered up at the thought that I had finished the wet feet portion of the course and I’d dry off before I looped back around and hit the muddy hill and plateau again. But, sadly, just around the next curve, came a mud POND. Not a pit, a pond.

Showing how bad the mud was

Again, ankle deep water and mud, not just once but in three different ponds all within 30 seconds or so of each other. It was really frustrating, and obviously you can’t run through them, so it slowed you down.

Then finally after the river crossing and the mud ponds, we hooked a right into a nice, forest trail that we spent about a mile and a half in (point H). It had a few muddy spots like you would normally expect to get muddy on a trail, but it wasn’t ankle deep or water filled or anything else. It was a nice relief!

Then we turned out of the forest and crossed a road and headed up one more (tiny, but it felt annoying despite how small it looks on the elevation profile) hill (point I), ran down the other side of that slope, stepped across another mud pond onto a pleasingly gravel path, and took the gravel path about .3 miles back all the way to complete the first full lap.

Phew.

I actually made pretty good time the first loop despite not knowing about all the mud or river crossing challenges. I was pleased with my time which was on track with my plan. Scott took my pack about .1 miles before I entered the start/finish area and brought it back to me refilled as I exited the start/finish area.

Lap 2:

The second lap was pretty similar. The Hill (A) felt remarkably harder after having experienced the first loop. I did try to run more of the downhill (B) as I recognized I’d make up some time from the walking climb as well as knowing I couldn’t run up the plateau or some of the mud pits along the plateau (C) as well as I had expected. I also decided running in the mud pits didn’t work, and went with the safer approach of stepping through them and then running 2 steps in between. I was a little slower this time, but still a reasonable pace for my goals.

The rest of the loop was roughly the same as the first, the mud was obnoxious, the river crossing freezing, the mud obnoxious again, and relief at running through the forest.

Scott met me at the end of the river road and biked along the short gravel section with me and went ahead so he could park his bike and take video of my second river crossing, which is the video above. I was thrilled to have video of that, because the static pictures of the river crossing didn’t feel like it did the depth and breadth of the water justice!

At the end of lap 2, Scott grabbed my pack again at the end of the loop and said he’d figured out where to meet me to give it back to me after the hill…if I wanted that. Yes, please! The bottom of the hill where you hairpin turn to go back up the plateau is the 1 mile marker point, so that means I ran the first mile of the third lap without my pack, and not having the weight of my full pack (almost 3L of water and lots of snacks and supplies: more on that pack below) was really helpful for my third time up the hill. He met me as planned at the bottom of the downhill (B) and I took my pack back which made a much nicer start to lap 3.

Lap 3:

Lap 3 for some reason I came out of the river crossing and the mud ponds feeling like I got extra mud in my right shoe. It felt gritty around the right side of my right food, and I was worried about having been running for so many hours with soaked feet. I decided to stop at a bench in the forest section and swap for dry socks. In retrospect, I wish I had stopped somewhere else, because I got swarmed by these moth/gnat/mosquito things that looked gross (dozens on my leg within a minute of sitting there) that I couldn’t brush off effectively while I was trying to remove my gaiters, untie my shoes, take my shoes off, peel my socks and bandaids and lambs wool off, put lubrication back on my toes, put more lambs wool on my toes, put the socks and shoes back on, and re-do my gaiters. Sadly, it took me 6 minutes despite me moving as fast as I could to do all of those things (this was a high/weirdly designed bench in a shack that looked like a bus stop in the middle of the woods, so it wasn’t the best way to sit, but I thought it was better than sitting on the ground).

(The bugs didn’t hurt me at the time, but two days later my dozens of bites all over my leg are red and swollen, though thankfully they only itch when they have something chafing against them.)

Anyway, I stood up and took off again and was frustrated knowing that it had taken 6 minutes and basically eaten the margin of time I had against my previous 50k time. I saw Scott about a quarter of a mile later, and I saw him right as I realized I had also somewhere lost my baggie of electrolyte pills. Argh! I didn’t have back up for those (although I had given Scott backups of everything else), so that spiked my stress levels as I was due for some electrolytes and wasn’t sure how I’d do with 3 or so more hours without them.

I gave Scott my pack and tasked him with checking my brother-in-law’s setup to see if he had spare electrolytes, while he was refilling my pack to give me in lap 4.

Lap 4:

I was pretty grumpy given the sock timing and the electrolyte mishap as I headed into lap 4. The hill still sucked, but I told myself “only one more hill after this!” and that thought cheered me up.

Scott had found two electrolyte options from my brother-in-law and brought those to me at the end of mile 1 (again, bottom of B slope) with my pack. He found two chewable and two swallow pills, so I had options for electrolytes. I chewed the first electrolyte tab as I headed up the plateau, and again talked myself through the mud pits with “only one more time through the mud pits after this!”.

I also tried overall to bounce back from the last of mile 4 where I let myself get frustrated, and try to take more advantage of the runnable parts of the course. I ran downhill (B) more than the previous laps, mostly ignoring the audio cues of my 30:60 intervals and probably running more like 45:30 or so. Similarly, the downhill gravel after the mud pits (D) I ran most of without paying attention to the audio run cues.

Scott this time also met me at the start of the river road section, and I gave him my pack again and asked him to take some things out that he had put in. He put in a bag with two pairs of replacement socks instead of just one pair of socks, and also put in an extra beef stick even though I didn’t ask for it. I asked him to remove it, and he did, but explained he had put it in just in case he didn’t find the electrolytes because it had 375g of sodium. (Sodium is primarily the electrolyte I am sensitive to and care most about). So this was actually a smart thing, although because I haven’t practiced eating larger amounts of protein and experienced enzyme dosing for it on the run, I would be pretty nervous about eating it in a race, so that made me a bit unnecessarily grumpy. Overall though, it was great to see him extra times on the course at this point, and I don’t know if he noticed how grumpy I was, but if he did he ignored it and I cheered up again knowing I only had “one more” of everything after this lap!

The other thing that helped was he biked my pack down the road to just before the river crossing, so I ran the river road section like I did lap 3 and 4 on the hill, without a pack. This gave me more energy and I found myself adding 5-10 seconds to the start of my run intervals to extend them.

The 4th river crossing was no less obnoxious and cold, but this time it and the mud ponds didn’t seem to embed grit inside my shoes, so I knew I would finish with the same pair of socks and not need another change to finish the race.

Lap 5:

I was so glad I was only running the 50k so that I only had 5 laps to do!

For the last lap, I was determined to finish strong. I thought I had a chance of making up a tiny bit of the sock change time that I had lost. I walked up the hill, but again ran more than my scheduled intervals downhill, grabbed my bag from Scott, picked my way across the mud pits for the final time (woohoo!), ran the downhill and ran a little long and more efficiently on the single track to the river road.

Scott took my pack again at the river road, and I swapped my intervals to be 30:45, since I was already running closer to that and I knew I only had 3.5 or so miles to go. I took my pack back at the end of river road and did my last-ever ice cold river crossing and mud pond extravaganza. After I left the last mud pond and turned into the forest, I switched my intervals to 30:30. I managed to keep my 30:30 intervals and stayed pretty quick – my last mile and a half was the fastest of the entire race!

I came into the finish line strong, as I had hoped to finish. Woohoo!

Overall strengths and positives from the race

Overall, running-wise I performed fairly well. I had a strong first lap and decent second lap, and I got more efficient on the laps as I went, staying focused and taking advantage of the more runnable parts of the course. I finished strong, with 30:45 intervals for over a mile and 30:30 intervals for over a mile to the finish.

Also, I didn’t quit after experiencing the river crossing and the mud ponds and the mud pits of the first lap. This wasn’t an “A” race for me or my first time at the distance, so it would’ve been really easy to quit. I probably didn’t in part because we did pay to spend the night before and drove all that way, and I didn’t want to have “wasted” Scott’s time by quitting, when I was very capable of continuing and wasn’t injured. But I’m proud of mostly the way I handled the challenges of the course, and for how I readjusted from the mental low and frustration after realizing how long my sock change took in lap 3. I’m also pleased that I didn’t get injured, given the terrain (mud, river crossing, and uneven grass to run on for most of the course). I’m also pleased and amazed I didn’t hurt my feet, cause major blisters, or have anything really happen to them after hours of wet, muddy, never-drying-off feet.

The huge positive was my fueling, electrolytes, and blood glucose management.

I started taking my electrolyte pills that have 200+mg of sodium at about 45 minutes into the race, on schedule. My snack choices also have 100-150mg of sodium, which allowed me to not take electrolyte pills as often as I would otherwise need to (or on a hotter day with more sweat – it was a damp, mid-60s day but I didn’t sweat as much as I usually do). But even with losing my electrolytes, I used two chewable 100mg sodium electrolytes instead and otherwise ended up with sufficient electrolytes. Even with ideal electrolyte supplementation, I’m very sensitive to sodium losses and am a salty sweater, and I have a distinct feeling when my electrolytes are insufficient, so not having that feeling during after the race was a big positive for me.

So was my fueling overall. The race started at 9am, and I woke up at 6am to eat my usual pre-race breakfast (a handful of pecans, plus my enzyme supplementation) so that it would both digest effectively and also be done hitting my blood sugar by the time the race started. My BGs were flat 120s or 130s when I started, which is how I like them. I took my first snack about an hour and 10 minutes into the race, which is about 15g carb (10g fat, 2g protein) of chili cheese flavored Fritos. For this, I didn’t dose any insulin as I was in range, and I took one lipase-only enzyme (which covers about 8g of fat for me) and one multi-enzyme (that covers about 6g of fat and probably over a dozen grams of protein). My second snack was an hour later, when I had a gluten free salted caramel Honey Stinger stroopwaffle (21g carb, 6 fat, 1 protein). For the stroopwaffle I ended up only taking a lipase-only pill to cover the fat, even though there’s 1g of protein. For me, I seem to be ok (or have no symptoms) from 2-3g of uncovered fat and 1-2g of uncovered protein. Anything more than that I like to dose enzymes for, although it depends on the situation. Throughout the day, I always did 1 lipase-only and 1 multi-enzyme for the Fritos, and 1 lipase-only for the stroopwaffle, and that seemed to work fine for me. I think I did a 0.3u (less than a third of the total insulin I would normally need) bolus for my stroopwaffle because I was around 150 mg/dL at the time, having risen following my un-covered Frito snack, and I thought I would need a tiny bit of insulin. This was perfect, and I came back down and flattened out. An hour and 20 minutes after that, I did another round of Fritos. An hour or so after that, a second stroopwaffle – but this time I didn’t dose any insulin for it as my BG was on a downward slope. An hour later, more Fritos. A little bit after that, I did my one single sugar-only correction (an 8g carb Airhead mini) as I was still sliding down toward 90 mg/dL, and while that’s nowhere near low, I thought my Fritos might hit a little late and I wanted to be sure I didn’t experience the feeling of a low. This was during the latter half of loop 4 when I was starting to increase my intensity, so I also knew I’d likely burn a little more glucose and it would balance out – and it did! I did one last round of Fritos during lap 5.
CGM graph during 50k ultramarathon

This all worked perfectly. I had 100% time in range between 90 and 150 mg/dL, even with 102g of “real food” carbs (15g x 4 servings of Fritos, 21g x 2 waffles), and one 8g Airhead mini, so in total I had 110g grams of carbs across ~7+ hours. This perfectly matched my needs with my run/walk moderate efforts.

BG and carb intake plotted along CGM graph during 50k ultramarathon

I also nailed the enzymes, as during the race I didn’t have any GI-related symptoms and after the race and the next day (which is the ultimate verdict for me with EPI), no symptoms.

So it seems like my practice and testing with low carbs, Fritos, and waffles worked out well! I had a few other snacks in my pack (yogurt-covered pretzels, peanut butter pretzel nuggets), but I never thought of wanting them or wanting something different. I did plan to try to do 2 snacks per hour, but I ended up doing about 1 per hour. I probably could have tolerated more, but I wasn’t hungry, my BGs were great, and so although it wasn’t quite according to my original plan I think this was ideal for me and my effort level on race day.

The final thing I think went well was deciding on the fly after loop 2 to have Scott take my pack until after the hill (so I ran the up/downhill mile without it), and then for additional stretches along river road in laps 4 and 5. I had my pocket of my shorts packed with dozens of Airheads and mints, so I was fine in terms of blood sugar management and definitely didn’t need things for a mile at a time. I’m usually concerned about staying hydrated and having water whenever I want to sip, plus for swallowing electrolytes and enzyme pills to go with my snacks, but I think on this course with the number of points Scott could meet me (after B, at F all through G, and from I to the finish), I could have gotten away with not having my pack the whole time; having WAY less water in the pack (I definitely didn’t need to haul 3L the whole time, that was for when I might not see Scott every 2-3 laps) and only one of each snack at a time.

Areas for improvement from my race

I trained primarily on gravel or paved trails and roads, but despite the “easy” elevation profile and terrain, this was essentially my first trail ultra. I coped really well with the terrain, but the cognitive burden of all the challenges (Mud pits! River crossing! Mud ponds!) added up. I’d probably do a little more trail running and hills (although I did some) in the final weeks before the race to help condition my brain a little more.

I’ll also continue to practice fueling so I can eat more regularly than every hour to an hour and a half, even though this was the most I’ve ever eaten during a run, I did well with the quantities, and my enzyme and BG management were also A+. But I didn’t eat as much as I planned for, and I think that might’ve helped with the cognitive fatigue, too, by at least 5-10%.

I also now have the experience of a “stop” during a race, in this case to swap my socks. I’ve only run one ultra and never stopped before to do gear changes, so that experience probably was sufficient prep for future stops, although I do want to be mentally stronger/less frustrated by unanticipated problem solving stops.

Specific to this course, as mentioned above, I could’ve gotten away with less supplies – food and water – in my pack. I actually ran a Ragnar relay race with a group of fellow T1s a few years back where I finished my run segment and…no one was there to meet me. They went for Starbucks and took too long to get there, so I had to stand in the finishing chute waiting for 10-15 minutes until someone showed up to start the next run leg. Oh, and that happened in two of the three legs I ran that day. Ooof. Standing there tired, hot, with nothing to eat or drink, likely added to my already life-with-type-1-diabetes-driven-experiences of always carrying more than enough stuff. But I could’ve gotten away very comfortably with carrying 1L of water and one set of each type of snacks at a time, given that Scott could meet me at 1 mile (end of B), start (F) and end of river road (before G), and at the finish, so I would never have been more than 2-2.5 miles without a refill, and honestly he could’ve gotten to every spot on the trail barring the river crossing bit to meet me if I was really in need of something. Less weight would’ve made it easier to push a little harder along the way. Basically, I carried gear like I was running a solo 30 mile effort at a time, which was safe but not necessary given the course. If I re-ran this race, I’d feel a lot more comfortable with minimal supplies.

Surprises from my race

I crossed the finish line, stopped to get my medal, then was waiting for my brother-in-law to finish another lap (he ran the 100k: 62 miles) before Scott and I left. I sat down for 30 minutes and then walked to the car, but despite sitting for a while, I was not as stiff and sore as I expected. And getting home after a 3.5 hour car ride…again I was shocked at how minimally stiff I was walking into the house. The next morning? More surprises at how little stiff and sore I was. By day 3, I felt like I had run a normal week the week prior. So in general, I think this is reinforcement that I trained really well for the distance and my long runs up to 50k and the short to medium next day runs also likely helped. I physically recovered well, which is again part training but also probably better fueling during the race, and of course now digesting everything that I ate during and after the race with enzyme supplementation for EPI!

However, the interesting (almost negative, but mostly interesting) thing for me has been what I perceived to be adrenal-type fatigue or stress hormone fatigue. I think it’s because I was unused to focusing on challenging trail conditions for so many hours, compared to running the same length of hours on “easy” paved or gravel trails. I actually didn’t listen to an audiobook, music, or podcast for about half of the race, because I was so stimulated by the course itself. What I feel is adrenal fatigue isn’t just being physically or mentally tired but something different that I haven’t experienced before. I’m listening to my body and resting a lot, and I waited until day 4 to do my first easy, slow run with much longer walk intervals (30s run, 90s walk instead of my usual 30:60). Day 1 and 2 had a lot of fatigue and I didn’t feel like doing much, Day 3 had notable improvement on fatigue and my legs and body physically felt back to normal for me. Day 4 I ran slowly, Day 5 I stuck with walking and felt more fatigue but no physical issues, Day 6 again I chose to walk because I didn’t feel like my energy had fully returned. I’ll probably stick with easy, longer walk interval runs for the next week or two with fewer days running until I feel like my fatigue is gone.

General thoughts about ultramarathon training and effective ultra race preparation

I think preparation makes a difference in ultramarathon running. Or maybe that’s just my personality? But a lot of my goal for this race was to learn what I could about the course and the race setup, imagine and plan for the experience I wanted, plan for problem solving (blisters, fuel, enzymes, BGs, etc), and be ready and able to adapt while being aware that I’d likely be tired and mentally fatigued. Generally, any preparation I could do in terms of deciding and making plans, preparing supplies, etc would be beneficial.

Some of the preparation included making lists in the weeks prior about the supplies I’d need in my pack, what Scott should have to refill my pack, what I’d need the night and morning before since we would not be at home, and after-race supplies for the 3.5h drive home.

From the lists, the week before the race I began grouping things. I had my running pack filled and ready to go. I packed my race outfit in a gallon bag, a full set of backup clothes in another gallon bag and labeled them, along with a separate post-run outfit and flip flops for the drive home. I also included a washcloth for wiping sweat or mud off after the run, and I certainly ended up needing that! I packed an extra pair of shoes and about 4 extra pairs of socks. I also had separate baggies with bandaids of different sizes, pre-cut strips of kinesio tape for my leg and smaller patches for blisters, extra squirrel nut butter sticks for anti-chafing purposes, as well as extra lambs wool (that I lay across the top of my toes to prevent socks from rubbing when they get wet from sweat or…river crossings, plus I can use it for padding between my toes or other blister-developing spots). I had sunscreen, bug spray, sungless, rain hat, and my sunny-weather running visor that wicks away sweat. I had low BG carbs for me to put in my pockets, a backup bag for Scott to refill, and a backup to the backup. The same for my fuel stash: my backpack was packed, I packed a small baggie for Scott as well as a larger bag with 5-7 of everything I thought I might want, and also an emergency backup baggie of enzymes.

*The only thing I didn’t have was a backup baggie of electrolyte pills. Next time, I’ll add this to my list and treat them like enzymes to make sure I have a separate backup stash.

I even made a list and gave it to Scott that mapped out where key things were for during and after the race. I don’t think he had to use it, because he was only digging through the snack bag for waffles and Fritos, but I did that so I didn’t have to remember where I had put my extra socks or my spare bandaids, etc. He basically had a map of what was in each larger bag. All of this was to reduce the decision and communication because I knew I’d have decision fatigue.

This also went for post-race planning. I told Scott to encourage me to change clothes, and it was worth the energy to change so I didn’t sit in cold, wet clothes for the long drive home. I pre-made a gluten free ham and cheese quesadilla (take two tortillas, fill with shredded cheese and slices of ham, microwave, cut into quarters, stick in baggies, mark with fat/protein/carb counts, and refrigerate) so we could warm that up in the car (this is what I use) so I had something to eat on the way home that wasn’t more Fritos or waffles. I didn’t end up wanting it, but I also brought a can of beef stew with carrots and potatoes, that I generally like as a post-race or post-run meal, and a plastic container and a spoon so I could warm up the stew if I wanted it. Again, all of this pre-planned and put on the list weeks prior to the race so I didn’t forget things like the container or the spoon.

The other thing I think about a lot is practicing everything I want to do for a race during a training run. People talk about eating the same foods, wearing the same clothes, etc. I think for those of us with type 1 diabetes (or celiac, EPI, or anything else), it’s even more important. With T1D, it’s so helpful to have the experience adjusting to changing BG levels and knowing what to do when you’re dropping or low and having a snack, vs in range and having a fueling snack, or high and having a fueling snack. I had 100% TIR during this run, but I didn’t have that during all of my training runs. Sometimes I’d plateau around 180 mg/dL and be over-cautious and not bring my BGs down effectively; other times I’d overshoot and cause a drop that required extra carbs to prevent or minimize a low. Lots of practice went into making this 100% TIR day happen, and some of it was probably a bit of luck mixed in with all the practice!

But generally, practice makes it a lot easier to know what to do on the fly during a race when you’re tired, stressed, and maybe crossing an icy cold river that wasn’t supposed to be part of your course experience. All that helps you make the best possible decisions in the weirdest of situations. That’s the best you can hope for with ultrarunning!

The multivariable equation that is running with type 1 diabetes, celiac disease, and exocrine pancreatic insufficiency

I’ve written in the past about running with type 1 diabetes. I’ve tried running fasted, which works well in one sense because I have no extra insulin on board. I’ve modified my strategy further to run 2 or more hours after breakfast, so I have fuel but don’t have (much) IOB. But as I’ve extended my forays deeper into longer distance ultrarunning, and as I learned I have exocrine pancreatic insufficiency (EPI), running is getting a little more complicated.

For past thoughts on T1D running, here’s my post on running fasted and thinking about IOB. I also wrote more here last year about marathon and 50k ultramarathon training and how I use small doses of carbs to “correct” for dipping blood sugars. Last year, my body didn’t seem to need or want much additional fuel, so I didn’t force it. Part of that was likely a symptom of my undiscovered EPI. Now, however, that I am taking enzymes for pancreatic enzyme replacement therapy so I can digest what I eat, I have more energy (because my body is actually using what I eat), but I also get hungry and seem to need more fuel while running. But everything I eat needs enzymes to help me digest it, even things that I eat while ultrarunning.

So…it’s complicated to run with type 1 diabetes and micromanage insulin and carbs to manage blood glucose levels; and I’m limited in my fuel choices because I have celiac disease; and now I have to also carry, titrate, and dose enzymes for any fuel that I eat on the run as well.

Oh, and like insulin, the timing of enzymes matters. But there are no studies on enzyme digestion and how that changes during exercise, let along endurance activities like ultrarunning. So I am running in the dark, so to speak, trying to figure out things myself as I go along.

Here is more detail about what I’m doing and why I’m constantly running multivariable equations in my head while training for a 50k, 50 mile, and maybe even 100 mile run later this year:

First and foremost, managing blood sugar levels comes first.

I wear a CGM, so I can see how my blood sugar (BG) is changing during the run. I have a pump, so I can make any changes to insulin dosing. I also have an open source AID system (OpenAPS), so before running I set a higher target which tells the system not to give me as much insulin as it would otherwise. (It also does an awesome job with post-run insulin sensitivity changes! But that’s another post.) As I’ve previously written about, reducing insulin on board (IOB) when I know I’ll be running is the important first step, so I don’t have to start taking carbs and treating a low at the start of my run. Usually, my open source AID and I (by giving it a temporary target) do a good job getting me to my run start without much IOB, and ideally somewhere around 120-130 mg/dL.

From that level area, I can see rises and dips in BGs and dose accordingly. I carry easily dissolving small mint-like candies that are a few carbs (3-4g), or Airhead minis (8g of carbs), and with any dip below 120 or recurring drop that’s not coming up after 15 minutes since my last carb, I take more. These are pretty much straight sugar, and my body seems to do ok with absorbing carbs without enzymes, as long as there is no fat or protein involved.

However, with ultrarunning it’s generally considered to be ideal to proactively be consuming fuel to balance out the energy that you’re burning. Again, this is where I’m less experienced because for the last years, my body never wanted fuel and I did ok. However, now I seem to need fuel, so I’m working on figuring this out because food typically has some fat and protein, and I have to dose enzymes for it.

I carry a baggy with some single-enzyme (lipase) pills and some multi-enzyme (lipase for fat, amylase for carbs, and protease for protein) pills. I carry carefully measured single-serving snacks that I know the fat and protein quantity of. For each snack, I might need 1-2 enzyme pills of various sorts.

Timing matters: I can’t take enzymes and then snack slowly for 30 minutes. To eat slowly, I would need to take enzymes every 10-15 minutes to match the speed of eating so it will ultimately be there to help the food digest.

But, more carbs/food at once has an effect on how I feel while running and also to my BGs. I’ve tried to find things I love to eat running and can eat within 5 minutes – even while running 30 seconds and walking 60 seconds repeatedly – that are also less than 1-2 enzyme pills worth of fat and protein and aren’t too many carbs at once. These may be 15-20g carb snacks which means a bigger impact to my BG levels, and I may need to even do a small bolus (give insulin) for what I am eating. The challenge again is that food can hit BGs in about 15 minutes but it takes ~45 minutes for insulin activity to peak. And, during exercise, I’m more sensitive to insulin than I normally am. There’s no magical calculation to know how much “more” sensitive I am in the midst of a run, so I have to guess and thread the needle between not giving too much insulin that would cause a low BG but giving enough so I don’t spike above 180 mg/dL, which is what makes me feel icky while running.

Preferably, and very personally, I’d like to float up and down between 120-140 mg/dL or 130-150 mg/dL, which is higher than BGs usually hang out for me without exercise (remember: open source AID!), but is high enough that I have buffer against a low, so if I suddenly dip and I haven’t looked at my BGs in 15 minutes, I can usually still carb up and prevent an annoying low. (Lows matter even more on runs because they slow me down physically, which is usually not what I’m going for.)

It doesn’t always work that way. Sometimes I undershoot the insulin because I’ve miscalculated my effort running, and my BG drifts high and I have to decide whether or not to correct further. Other times, I overshoot (or have increased my run effort and didn’t take that into consideration) and cause BG to dip or dive toward low. Then I have to carb up but hopefully not so much that I cause a high.

My priority list therefore is: manage BGs, take in fuel, try not to over or undershoot on insulin for the fuel or overshoot carb corrections for drifting BGs, plus remember to take enzymes for the fuel and dose the right amount, plus stay on top of my electrolytes. Oh, and keep run-walking.

And along the way, I am also trying to document and learn whether the absorption of enzymes changes during different intensities or lengths of exercise; whether these over the counter enzymes are reliably measured enough for small snacks, and whether my personal ratios for fat and protein are any different during exercise the way my sensitivity to insulin changes during exercise.

It’s a lot of work. Plus, the pre-work that goes in to finding, measuring, and preparing foods that I think I want to eat during the run!

My current short list of single-serving snacks that I can tolerate while doing long runs includes: 8 gluten free peanut butter pretzel nuggets; 1 serving of chili cheese Fritos; 6 gluten free yogurt covered pretzels; and 1 gluten free stroopwaffle. Each of those is 15-20g of carb, 1-2 enzyme pills, and some of them have a bit of sodium. (I’m also fairly sensitive to sodium so I take electrolyte pills every 30-45 minutes while racing, but I’ve realized the extra fueling with a bit of sodium makes it so I don’t have to take the electrolyte pills every 30 minutes like I used to.)

When I build up to my longer (50 mile or maybe 100 mile ultras, if I get there!) runs, I’m also going to need additional “real food” options, as I doubt I will be able to or want to eat stroopwaffle and Fritos for as long as the run will take. This is just a theoretical list, but it includes tomato soup (sodium and warm liquid!), instant mashed potatoes (soft and not much chewing involved), grits and oatmeal (not together, but same reason as mashed potatoes). These all luckily also happen to be lower in fat and protein, which means easier to digest (in theory), and I am less likely to have better error margins against getting the enzyme dosing wrong given the small amounts of fat and protein.

What it comes down to is that running with type 1 diabetes is a giant constant personal science experiment. Celiac makes it more work, but also removes some of the variables by limiting what I can to eat: as at races I can’t eat out of any open bowl or package due to cross contamination concerns, and reading packages takes time, so it’s way safer to just eat what I bring myself. Having EPI on top of that means mastering the art of digesting food with pancreatic enzyme replacement therapy, which is its own special form of science experiment.

There’s a lot of variables, a lot of science, and a lot of learning going on every time I go for a run. Doesn’t it sound fun?!


(PS – If you’re someone with EPI who has some experience with endurance activity and changes to dosing enzymes..or find that it doesn’t change anything…please reach out! I’d love to chat and take my knowledge base from n=1 to n=2!)

Multivariable Equations: Running with Type 1 diabetes, celiac disease, and Exocrine Pancreatic Insufficiency

Peer pressure during and “after” the COVID-19 pandemic, why it’s similar to living with celiac disease or food allergies, and a reminder that we usually have choices

Imagine that you are invited to go out to eat with a group of friends, or with colleagues at a conference.

Your mind races.

You start to think through the venue and if it’s safe for you to go. What the experience will be like at the venue. What the short-term risks are over the next few days. What the long-term risks are for you and your health, because what you choose to do will potentially influence your health for years to come.

Maybe you shouldn’t, or don’t want to go.

Given the venue, you realize that you can make choices for yourself to make it safer for you, regardless of what anyone else does. You can choose to go, but you can also do things differently than everyone else. But there’s a cost. There’s a short term cost of being the “different” one at the table.

So what do you choose? Do you cave to social pressure, and “just do what everyone else is doing”, because you think the risk of short term costs isn’t a big deal, and you don’t worry about the long-term costs to your health? Or do you decide to do something different, either not going, or doing something different at the venue than everyone else? Or do you decide to suggest an alternative?

For those of us who are reading this in 2022 or beyond, we may read the above scenario and think primarily about COVID-19 risk factors and mitigations.

But for those of us living with celiac disease (or food allergies or other significant dietary restrictions), the above scenario is one we lived with even prior to 2019 and COVID.

Here’s how this scenario could read specifically for COVID-19, with COVID-specifics bolded:

Imagine that you are invited to go out to eat with a group of friends, or with colleagues at a conference.

Your mind races.

You start to think through the venue and if it’s safe for you to go. What will the experience be like at the venue: Is it indoor or outdoor? What is the ventilation like? Is everyone in your group vaccinated and boosted? What the short-term risks are over the next few days: If you get COVID-19, how will that impact your schedule/life/childcare etc? How at risk are you for hospitalization with COVID-19? What the long-term risks are for you and your health, because what you choose to do will potentially influence your health for years to come: Are you concerned about “long COVID” or associated conditions? What are the risks that a COVID infection would make your personal health situation worse?

Maybe you shouldn’t, or don’t want to go.

Given the venue, you realize that you can make choices for yourself to make it safer for you, regardless of what anyone else does. You can choose to go, but you can also do things differently than everyone else. But there’s a cost. There’s a short term cost of being the “different” one at the table. You could go, but wear an N95 mask and only take off your mask to quickly eat or drink. Or you could go and mask, but not eat. Or you could bring a CO2 meter to evaluate the ventilation, and use that to decide.

So what do you choose? Do you cave to social pressure, and “just do what everyone else is doing”, because you think the risk of short term costs isn’t a big deal, and you don’t worry about the long-term costs to your health? Or do you decide to do something different, either not going, or doing something different (e.g. N95 masking, and/or not eating) at the venue than everyone else? Or do you decide to suggest an alternative, such as picking an outdoor venue instead of indoors, or choosing an activity that doesn’t involve close proximity and eating or drinking, such as a walk?

Now consider how this scenario could read specifically for someone with celiac disease (or food allergies or food restrictions), with those specifics bolded (in a pre-pandemic life):

Imagine that you are invited to go out to eat with a group of friends, or with colleagues at a conference.

Your mind races.

You start to think through the venue and if it’s safe for you to go. What will the experience be like at the venue: Do they have a gluten free menu? Do they indicate that they have cross-contamination practices in place for making the food gluten free? Does the menu even have food that is worth eating? What the short-term risks are over the next few days: If you get glutened and are someone who is symptomatic, how will the minutes, hours, and days following of not feeling well influence your schedule/life/childcare etc? What will you not be able to do because you won’t feel well enough? What the long-term risks are for you and your health, because what you choose to do will potentially influence your health for years to come: Some people with celiac disease aren’t symptomatic, but are causing damage even if they don’t feel it in the minutes/hours/days following. Eating gluten causes the immune system to attack the body, increasing the risk for cancer and other complications.

Maybe you shouldn’t, or don’t want to go.

Given the venue, you realize that you can make choices for yourself to make it safer for you, regardless of what anyone else does. You can choose to go, but you can also do things differently than everyone else. But there’s a cost. There’s a short term cost of being the “different” one at the table. You could go, but not eat if there’s not food worth eating or if you determine (in advance or at the restaurant) that they doesn’t have safe practices for preventing cross-contamination. You could go, but bring your own food and do your own thing.

So what do you choose? Do you cave to social pressure, and “just do what everyone else is doing”, because you think the risk of short term costs isn’t a big deal, and you don’t worry about the long-term costs to your health? Or do you decide to do something different, either not going, or doing something different (e.g. not eating, or bringing your own food) at the venue than everyone else? Or do you decide to suggest an alternative, such as recommending a different venue that has safer gluten free options, or choosing an activity that doesn’t involve eating, such as a walk?

In both a COVID-19 scenario and a scenario for someone with food allergies, food restrictions, or celiac disease, my point is that you have choices. While other people’s choices can affect you, your choices are the ones that matter most.

With celiac disease, which I’ve had for more than 13 years, I’ve personally chosen many times to not eat at places that weren’t safe for me.

I would eat a meal or snack before I go or while I’m there, or I bring food from elsewhere. Sometimes I’ve felt really awkward, but it was safer and the right choice for me to make. Sometimes it’s because I couldn’t change the venue, and the venue’s safe food was dry lettuce and dry chicken, and it just wasn’t worth eating. (Ever turned your nose up at airplane food? Same idea.) Sometimes I would bring my own food, and it’s gotten a lot easier to use a delivery service to get food from a safer (and often tastier) place. Or sometimes I couldn’t change the venue and there were supposedly safe options, but then the waiter did something that indicated it was likely not safe for me (e.g. saying “oh, just take the bread off your plate, no big deal”). That’s pretty much an automatic “do not eat here, it’s not safe” red flag being waved in my face.

It’s not fun to not get to eat or not get to do what everyone else around you is doing. I get it. Trust me, I do.

But do you know what is even LESS fun than feeling awkward? Getting glutened. Within minutes, feeling your chest tighten and getting abdominal cramps (that are like getting a “stitch in your side”, but all the way across your abdomen, and unrelenting for 30 minutes) that make you think you should go to the ER. Days of fatigue, brain fog and sore abdominal muscles. Knowing that you’ve increased the chances of tears in your small intestines and increased the risk of various types of cancers. All because of a speck of a crumb that found its way into your food.

So I make awkward choices. Sometimes I face teasing, and occasionally outright bullying, although thankfully that has been rare. And I’ve survived these choices.

I’ve gotten better over time, researching venues and making recommendations about safe places for me to eat. 99% of the time, people have zero problem going to the places I recommend. They want me to be safe and happy, they don’t really care what they eat, they’d rather have my (happy) company than to go someplace without me. (And if your  friends/colleagues/family members don’t care that much about you…maybe this will give you some food for thought.) I can’t always find safe GF options, so I also plan ahead and pack tasty snacks or food options, eat in advance, or plan to eat afterward.

And when that’s not possible, I make the choice to do the “awkward” but safe thing for me.

So in a COVID-19 or similar pandemic, I want you to know that you have choices. I’ve read a few stories from folks online who have shared regrets that they felt “peer pressure” to go eat at a conference, inside, because that’s what their friends or colleagues were doing. And they got COVID-19. Which doesn’t sound fun in the short run (being sick, getting stuck in foreign countries or strange cities, having to disrupt the lives of everyone around you, struggling to not infect your loved ones, being stuck without child care), nor the long run (risks of long COVID, or risks of additional conditions that can occur following COVID).

If you need ideas, here are some you can consider:

  • Pick an outside venue.
  • Get takeout food and go eat outside somewhere.
  • If you are inside, ensure good ventilation (sit by windows, open the windows). If you’re unsure the ventilation is good enough, you can bring a CO2 meter* to measure just how stale the air is. If you have a choice, sit somewhere quieter and further away from others, so you don’t have to yell in each other’s faces to be heard.
  • If the ventilation isn’t great, or you’re in a loud and/or crowded venue talking face to face with people who haven’t recently tested, you might want to stay masked except for when you are eating or drinking. Then put your mask back on. Limit the time you are exposed to the indoor air that everyone else’s been breathing.
  • If you are inside a poorly ventilated, loud, and/or crowded space, or otherwise consider the risks to be too high for your comfort, you can leave your N95 mask on the whole time – you don’t have to eat just because everyone else is eating unmasked!

I get it. It’s hard, it’s awkward, and peer pressure is real. But you do have choices you can make, and it gets easier when you think about your choices in advance and mitigate or decide how you’ll handle such a situation.

I hope this has given you food for thought about what choices you could make if you’re worried about such situations, and know that there are many others out there making similar choices, whether it’s because of COVID-19 or because of things like celiac disease, food allergies, or other dietary restrictions for health reasons.


Note: this is the CO2 monitor we bought (amazon affiliate link). It’s pricey, but we’ve definitely put it to use on planes and at meetings and feel like it is a worthwhile tool.

Findings from the world’s first RCT on open source AID (the CREATE trial) presented at #ADA2022

September 7, 2022 UPDATEI’m thrilled to share that the paper with the primary outcomes from the CREATE trial is now published. You can find it on the journal site here, or view an author copy here. You can also see a Twitter thread here, if you are interested in sharing the study with your networks.

Example citation:

Burnside, M; Lewis, D; Crocket, H; et al. Open-Source Automated Insulin Delivery in Type 1 Diabetes. N Engl J Med 2022;387:869-81. DOI:10.1056/NEJMoa2203913


(You can also see a previous Twitter thread here summarizing the study results, if you are interested in sharing the study with your networks.)

TLDR: The CREATE Trial was a multi-site, open-labeled, randomized, parallel-group, 24-week superiority trial evaluating the efficacy and safety of an open-source AID system using the OpenAPS algorithm in a modified version of AndroidAPS. Our study found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14 percentage points higher among those who used the open-source AID system (95% confidence interval [CI], 9.2 to 18.8; P<0.001) compared to those who used sensor augmented pump therapy; a difference that corresponds to 3 hours 21 minutes more time spent in target range per day. The system did not contribute to any additional hypoglycemia. Glycemic improvements were evident within the first week and were maintained over the 24-week trial. This illustrates that all people with T1D, irrespective of their level of engagement with diabetes self-care and/or previous glycemic outcomes, stand to benefit from AID. This study concluded that open-source AID using the OpenAPS algorithm within a modified version of AndroidAPS, a widely used open-source AID solution, is efficacious and safe.

The backstory on this study

We developed the first open source AID in late 2014 and shared it with the world as OpenAPS in February 2015. It went from n=1 to (n=1)*2 and up from there. Over time, there were requests for data to help answer the question “how do you know it works (for anybody else)?”. This led to the first survey in the OpenAPS community (published here), followed by additional retrospective studies such as this one analyzing data donated by the community,  prospective studies, and even an in silico study of the algorithm. Thousands of users chose open source AID, first because there was no commercial AID, and later because open source AID such as the OpenAPS algorithm was more advanced or had interoperability features or other benefits such as quality of life improvements that they could not find in commercial AID (or because they were still restricted from being able to access or afford commercial AID options). The pile of evidence kept growing, and each study has shown safety and efficacy matching or surpassing commercial AID systems (such as in this study), yet still, there was always the “but there’s no RCT showing safety!” response.

After Martin de Bock saw me present about OpenAPS and open source AID at ADA Scientific Sessions in 2018, we literally spent an evening at the dinner table drawing the OpenAPS algorithm on a napkin at the table to illustrate how OpenAPS works in fine grained detail (as much as one can do on napkin drawings!) and dreamed up the idea of an RCT in New Zealand to study the open source AID system so many were using. We sought and were granted funding by New Zealand’s Health Research Council, published our protocol, and commenced the study.

This is my high level summary of the study and some significant aspects of it.

Study Design:

This study was a 24-week, multi-centre randomized controlled trial in children (7–15 years) and adults (16–70 years) with type 1 diabetes comparing open-source AID (using the OpenAPS algorithm within a version of AndroidAPS implemented in a smartphone with the DANA-i™ insulin pump and Dexcom G6® CGM), to sensor augmented pump therapy. The primary outcome was change in the percent of time in target sensor glucose range (3.9-10mmol/L [70-180mg/dL]) from run-in to the last two weeks of the randomized controlled trial.

  • This is a LONG study, designed to look for rare adverse events.
  • This study used the OpenAPS algorithm within a modified version of AndroidAPS, meaning the learning objectives were adapted for the purpose of the study. Participants spent at least 72 hours in “predictive low glucose suspend mode” (known as PLGM), which corrects for hypoglycemia but not hyperglycemia, before proceeding to the next stage of closed loop which also then corrected for hyperglycemia.
  • The full feature set of OpenAPS and AndroidAPS, including “supermicroboluses” (SMB) were able to be used by participants throughout the study.

Results:

Ninety-seven participants (48 children and 49 adults) were randomized.

Among adults, mean time in range (±SD) at study end was 74.5±11.9% using AID (Δ+ 9.6±11.8% from run-in; P<0.001) with 68% achieving a time in range of >70%.

Among children, mean time in range at study end was 67.5±11.5% (Δ+ 9.9±14.9% from run-in; P<0.001) with 50% achieving a time in range of >70%.

Mean time in range at study end for the control arm was 56.5±14.2% and 52.5±17.5% for adults and children respectively, with no improvement from run-in. No severe hypoglycemic or DKA events occurred in either arm. Two participants (one adult and one child) withdrew from AID due to frustrations with hardware issues.

  • The pump used in the study initially had an issue with the battery, and there were lots of pumps that needed refurbishment at the start of the study.
  • Aside from these pump issues, and standard pump site/cannula issues throughout the study (that are not unique to AID), there were no adverse events reported related to the algorithm or automated insulin delivery.
  • Only two participants withdrew from AID, due to frustration with pump hardware.
  • No severe hypoglycemia or DKA events occurred in either study arm!
  • In fact, use of open source AID improved time in range without causing additional hypoglycemia, which has long been a concern of critics of open source (and all types of) AID.
  • Time spent in ‘level 1’ and ‘level 2’ hyperglycemia was significantly lower in the AID group as well compared to the control group.

In the primary analysis, the mean (±SD) percentage of time that the glucose level was in the target range (3.9 – 10mmol/L [70-180mg/dL]) increased from 61.2±12.3% during run-in to 71.2±12.1% during the final 2-weeks of the trial in the AID group and decreased from 57.7±14.3% to 54±16% in the control group, with a mean adjusted difference (AID minus control at end of study) of 14.0 percentage points (95% confidence interval [CI], 9.2 to 18.8; P<0.001). No age interaction was detected, which suggests that adults and children benefited from AID similarly.

  • The CREATE study found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14.0 percentage points higher among those who used the open-source AID system compared to those who used sensor augmented pump therapy.
  • This difference reflects 3 hours 21 minutes more time spent in target range per day!
  • For children AID users, they spent 3 hours 1 minute more time in target range daily (95% CI, 1h 22m to 4h 41m).
  • For adult AID users, they spent 3 hours 41 minutes more time in target range daily (95% CI, 2h 4m to 5h 18m).
  • Glycemic improvements were evident within the first week and were maintained over the 24-week trial. Meaning: things got better quickly and stayed so through the entire 24-week time period of the trial!
  • AID was most effective at night.
Difference between control and AID arms overall, and during day and night separately, of TIR for overall, adults, and kids

One thing I think is worth making note of is that one criticism of previous studies with open source AID is regarding the self-selection effect. There is the theory that people do better with open source AID because of self-selection and self-motivation. However, the CREATE study recruited a diverse cohort of participants, and the study findings (as described above) match all previous reports of safety and efficacy outcomes from previous studies. The CREATE study also found that the greatest improvements in TIR were seen in participants with lowest TIR at baseline. This means one major finding of the CREATE study is that all people with T1D, irrespective of their level of engagement with diabetes self-care and/or previous glycemic outcomes, stand to benefit from AID.

This therefore means there should be NO gatekeeping by healthcare providers or the healthcare system to restrict AID technology from people with insulin-requiring diabetes, regardless of their outcomes or experiences with previous diabetes treatment modalities.

There is also no age effect observed in the trail, meaning that the results of the CREATE Trial demonstrated that open-source AID is safe and effective in children and adults with type 1 diabetes. If someone wants to use open source AID, they would likely benefit, regardless of age or past diabetes experiences. If they don’t want to use open source AID or commercial AID…they don’t have to! But the choice should 100% be theirs.

In summary:

  • The CREATE trial was the first RCT to look at open source AID, after years of interest in such a study to complement the dozens of other studies evaluating open source AID.
  • The conclusion of the CREATE trial is that open-source AID using the OpenAPS algorithm within a version of AndroidAPS, a widely used open-source AID solution, appears safe and effective.
  • The CREATE trial found that across children and adults, the percentage of time that the glucose level was in the target range of 3.9-10mmol/L [70-180mg/dL] was 14.0 percentage points higher among those who used the open-source AID system compared to those who used sensor augmented pump therapy; a difference that reflects 3 hours 21 minutes more time spent in target range per day.
  • The study recruited a diverse cohort, yet still produced glycemic outcomes consistent with existing open-source AID literature, and that compare favorably to commercially available AID systems. Therefore, the CREATE Trial indicates that a range of people with type 1 diabetes might benefit from open-source AID solutions.

Huge thanks to each and every participant and their families for their contributions to this study! And ditto, big thanks to the amazing, multidisciplinary CREATE study team for their work on this study.


September 7, 2022 UPDATE – I’m thrilled to share that the paper with the primary outcomes from the CREATE trial is now published. You can find it on the journal site here, or like all of the research I contribute to, access an author copy on my research paper.

Example citation:

Burnside, M; Lewis, D; Crocket, H; et al. Open-Source Automated Insulin Delivery in Type 1 Diabetes. N Engl J Med 2022;387:869-81. DOI:10.1056/NE/Moa2203913

Note that the continuation phase study results are slated to be presented this fall at another conference!

Findings from the RCT on open source AID, the CREATE Trial, presented at #ADA2022

Reflecting on 4 months with Exocrine Pancreatic Insufficiency (EPI) and Experiences with Pancreatic Enzyme Replacement Therapy (PERT)

Exocrine Pancreatic Insufficiency (EPI or PEI) is an invisible disease – you don’t see or hear much of it and there’s not a lot of information for patients online, nor information written by people with EPI. (That’s in part why I’ve been documenting my experiences with EPI – more at DIYPS.org/EPI if you want to see the other EPI-related posts that I’ve written, including about PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data!).

I’ve now spent more than 4 months with (known) EPI and taking pancreatic enzyme replacement therapy (PERT), and I’m sharing what I’ve found so far that’s worked for me. I also wanted to share an update on my experiences and what I wish I had known at the start that I know now.

Mainly, it gets better. It gets easier.

4 months on PERT for EPI

“It” being how I felt and now feel, and the process of figuring out how much enzymes to take, and the process of working more math into the choices of what, when, and how I was eating. It’s a lot of work, but it has gotten easier. And I feel a lot better. I now have multi-week streaks where I have perfect dosing for everything that I eat and dose for, and it’s rare to not get it right.

The early weeks were not this great: I definitely felt better than before, but not “back to normal”.

Now, I feel “back to normal” like I think I did 2-3 years ago before symptoms became noticeable. When I don’t manage to dose perfectly, the symptoms are way more minimal than previously, in part due to the fact that I’ve had so many days of feeling great and in part due to the fact that the margin of error is a lot smaller since I’ve figured out a good ratio of lipase:fat and protease:protein that works well and reliably for me.

This has confirmed for me that titrating doses of enzyme does matter. I documented everything I was eating (including listing out the amount of fat and protein) and the amount/level of enzymes I was taking. Over time, I was able to see a general threshold above/below which dosing usually worked or didn’t work, and then test slightly smaller amounts of fat and/or protein to get to an amount that reliably “worked” with that size of enzyme dose. From there, it was simple math to divide the thousand units of lipase in that size of enzyme dose by the grams of fat or protein to identify the ratio of fat:lipase or protein:protease that I needed. This has helped me get the right dose of enzymes for every meal. It has also enabled me to then choose between the more expensive and higher-dose prescription enzyme pills I have, or choose a combination of prescription and smaller-dose single or multi-enzyme over the counter pills. This ends up giving me more flexibility in the cost of enzymes it takes to cover the food I want to eat (or snack, or treat, or whatever) as well as more precision with dosing the right level of enzyme instead of 1x, 2x, 3x (etc.) a single dose size prescription pill.

In addition to feeling a lot better simply by having better GI-related outcomes and massive reduction in symptoms 95% of the time, my energy levels are way up. I’m also training to run an ultramarathon again this year, and the way I feel during training this year (with enzymes) compared to last year is startling. Even though I have another year’s worth of experience running that I didn’t have last year, the way I feel during and after runs is likely more attributable to the fact that I’m now digesting what I’m eating.

Additionally, the diversity of food that I’m choosing to eat is increasing constantly. I started conservatively, in part due to trying to figure out if I still had any FODMAP-related sensitivity, and also to make it easier to get the math “right” to figure out my optimal dose. As I got confident with my ratios and dosing PERT, I began eating a wider selection of foods, and finally have eaten my way back to eating actual onions (!) in the form of gluten free onion rings. They were delicious, and gave me zero problems. So I’m now confident the FODMAP-perceived sensitivities was really the increasing sensitivity to fat and protein as my elastase levels were dropping. It’s wonderful to not be as restricted in my food options. (I still have celiac disease and eat 100% gluten free and can’t have any cross-contamination, but after almost a year of not eating onion or garlic in any form including “natural flavors” of foods… “just” eating gluten free feels amazingly plentiful in options now.)

And because I’ve eaten more and a greater selection of foods, the thought of eating food doesn’t scare me anymore. I don’t cringe at the thought of actually eating, like I used to. I know it’s a matter of estimating or counting the fat and protein and dosing for it. If in doubt, I try to round up the number of pills I’m taking to provide a buffer. Unlike insulin, taking a little too much enzyme doesn’t hurt (other than the cost). But also like insulin (after almost 20 years), I am no longer counting the cost of every dose in my head with every meal. That definitely took over 3 months, because before then I was swallowing a PERT pill and knowing each and every one costs $9. Ugh. So that’s an improvement, even though I’m still aware of the cost, it’s not quite as bothersome to me on an every-instance basis.

Things aren’t perfect, though, despite it being a lot better. I still get overwhelmed sometimes by the amount of work to decide what I want to eat and how I’m going to estimate what is in it to try to figure out how much PERT to dose.

Some of the strategies I’ve identified that help reduce being overwhelmed include:

  • Asking for help when I can. I ask Scott (my husband) when he’s standing in the kitchen to glance at a label of a food and tell me the counts (grams of fat and protein per serving), so I can decide if I want to build a meal with that item in it. I also sometimes ask him to help me portion out individual servings of foods, such as taking a larger bag of chips and telling him the serving size that I want and asking him to weigh them out.
  • Separate the work of preparing (and counting) food from the process of deciding what to eat. (I hate using a scale and weighing things out, but it’s been really helpful to pre-portion snacks and other items). Having the pre-portioned and pre-counted amounts helps me then more easily incorporate them on the fly, because I’ve already done the counting work of figuring out what’s in them. (I either make a note on my phone in a spreadsheet or write with a marker on the baggie what the counts are.) Separating the work in advance from the decision of what to eat when it’s time to eat helps me cut down on the decision fatigue that occurs a lot for me.
  • Buying individual portions and “snack size” items of things I regularly eat. When I can find them, and thankfully I can afford to, I try to buy individual sizes of things that are pre-packaged and have the nutrition label for that serving size. It’s less work to portion it out and figure out the counts for it, so while it’s sometimes more expensive it saves me time and makes me more likely to incorporate it into my food choices.
  • Asking for help estimating what’s in mystery food (e.g. unlabeled/uncounted food items). I’ve got almost 20 years experience of estimating carb counts, but only a few months attempts of trying to estimate fat and protein counts. Sometimes I ask Scott to pitch in an estimate. Sometimes we try to look up an equivalent item (e.g., if assessing a local gluten free hamburger we got as takeout food, we’ll look up online what a few other chain restaurant hamburgers would be, and use that to triangulate). Sometimes he’ll weigh it on the scale and we’ll eyeball proportions of fat and protein in the meat versus the vegetables or rice. I’m already getting better at guesstimating, so like carb counting I imagine this will continue to get easier over time.

Managing decision fatigue is now the biggest hassle for me. I have developed a nice routine for taking counts and converting that to the right PERT doses, but I still get frustrated with having to think about what I’m eating and how I’m going to dose for it sometimes. This may be somewhat influenced by the fact that I’m running a lot and trying to eat a slightly higher level of protein than I would naturally be picking out in my diet. So having to pay attention to everything to count it for dosing and overall trying to achieve a general higher baseline of protein sometimes gets annoying (although obviously the increased need for protein is a choice, whereas EPI and dosing in general is not!).

In general, I’ve not found it hard to remember to take my enzymes. I’ve developed habits around figuring out my counts, converting that to what number and type of pills I’m taking, and I get those out to take with my first bite and/or throughout my meal, depending on the number. One thing that has helped with this is getting smaller pill cases (like these – they’re purple! They also come in white or multicolor) that I visually don’t hate and can put both the prescription and over the counter pills in. I have 2-3 of these filled and ready to go at any given time, which makes it easy to grab one when I head out for the day, or to have sitting in different spots on my kitchen island/counter so I have the visual reminder in addition to my traditional “prescription” bottle.

The other aspect aside from decision fatigue is the stress of uncertainty around food. I took a trip recently and it was very stressful being out of my routine at home for the first time since we realized I had EPI. I had to take a lot of enzymes with me, take extras in case something happened to them, pack snacks, figure out food in advance but also be ready to figure out food on the fly. This included guessing what was in airplane (gluten free) food. On the first flight, I gave Scott my dry airplane chicken because it didn’t look good or even worth the PERT, and ate snacks from my bag instead. On the flight home, the chicken had a sauce (woohoo) and came with cheesy potatoes, so I rounded up my dose guess and things were fine. In between on the trip, I also erred on the side of caution and rounded up my doses.That meant I took a little more than usual, but I had already factored that into the amount of enzymes I had packed for the trip. So that went fine. But the uncertainty in what I’d be eating for several days was stressful and hard. To help work around that, I had picked a hotel near a gluten free bakery and near a gluten free restaurant that I knew from a previous trip, so that at least I could reduce the uncertainty of “is there anything celiac-safe (gluten free) that I can eat” (which used to be my sole concern when traveling) and limit myself only to the uncertainty of “what do I dose for this?” every time I ate. That helped. So I’ll probably continue to use the pre-planning skills I learned from living with celiac because the uncertainty at every meal for EPI is a lot, especially when jet-lagged, and so everything I can do to pre-estimate or pre-plan and make sure I have access to food pays off.

(As I mentioned at the start of this post, you can find my previous posts about EPI at DIYPS.org/EPI. And I’m working on a number of research initiatives related to EPI and improving methods for helping people titrate doses of PERT. If you’re interested in collaborating on research related to EPI, please reach out any time!

You also may want to check out PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data!)

AID (APS) book now available in French!

Thanks to the dedicated efforts of Olivier Legendre and Dr. Mihaela Muresan, my book “Automated Insulin Delivery: How artificial pancreas “closed loop” systems can aid you in living with diabetes” (available on Amazon in Kindle, paperback, and hardcover formats, or free to read online and download at ArtificialPancreasBook.com) is now available in French!

The French version is also available for free download as a PDF at ArtificialPancreasBook.com or in Kindle (FR), paperback (FR), and hardcover (FR) formats!

 

French version of the AID book is now available, also in hardcover, paperback, and Kindle formats on Amazon

Merci au Dr. Mihaela Muresan et Olivier Legendre pour la traduction de l’intégralité de ce livre !

(Thank you to Dr. Mihaela Muresan and Olivier Legendre for translating this entire book!)

Why it feels harder to dose pancreatic enzyme replacement therapy (PERT) than insulin

In 2002 when I was diagnosed with Type 1 diabetes, I struggled with being handed a vial of insulin and told vaguely to eat X amount of food and take Y amount of insulin. There was no ability to eat more and adjust the dose accordingly. It was frustrating. The only tool I had was a huge (imagine three iPhone 13 or equivalently large smartphones sitting on top of each other) blood glucose meter that took a lot of blood and a long time (a minute or more) to return a single blood glucose data point. The feedback loop wasn’t very useful, even when I tested my blood sugar manually 10-14 times per day.

Thankfully, in the last two decades, diabetes tools have evolved. Meters got smaller, faster, and take less blood. There has also been the devlopment of continuous glucose monitors (CGM) which I can wear and get near real-time readings of glucose data and can see what’s happened in the past. And, paired with an algorithm that also knows about the history of any insulin dosing on my insulin pump, and it can automatically adjust my insulin delivery in real time to predict, prevent, and reduce hypo- and hyperglycemia. (AID is awesome and if you haven’t heard about it, there’s a 4-minute free animated video here that explains it.) Diabetes no longer is quite the headache it was twenty – or even ten – years ago.

But realizing that I have exocrine pancreatic insufficiency (known as EPI or PEI) and learning how to take pancreatic enzyme replacement therapy (known as PERT) is a similar headache to diabetes in 2002.

With insulin, taking too much can cause hypoglycemia (low blood sugar). Taking too little can cause hyperglycemia (high blood sugar). Yet, with diabetes, you can measure blood glucose and see the response to insulin within a minutes-to-hours time frame. You can also use an insulin pump and an automated insulin delivery system to titrate and adjust insulin in real time.

However, for EPI, you need to take enzymes (that your pancreas doesn’t produce enough of) to help you digest your food. Your pancreas makes three types of enzymes: lipase, to help fat digest; protease, to help protein digest; and amylase, to help starches and carbohydrates digest. These are taken by mouth as a pill that you swallow. Together in one pill, it’s called “pancrelipase”, and it’s for pancreatic enzyme replacement therapy (PERT). (I’m personally bad about using pancrelilpase/PERT interchangeably, because PERT is faster to say and type, but it is possible to use standalone enzymes in PERT).

Because they are pills that you have to swallow when you eat, it’s hard to dose. Taking too little means you may have GI-related symptoms in the hours following the meal and feeling bad until the next day or so. Taking too much is expensive, although unlike insulin it’s rare to take “too much” and cause bad side effects (although possible at super high doses). There’s also the “pill burden”, because swallowing a bunch of pills is annoying and sometimes hard, both physically to swallow and to remember to take them throughout your meal.

You also can’t take more hours later if you forgot to take them or realize you didn’t dose enough for that meal. If you underdosed, you underdosed and just get to experience the symptoms that come with it. Sometimes, it’s not clear why you are having symptoms. Because there are three enzymes being replaced, it’s possible that the dosing was off for any one of the three enzymes. But again, there’s no measurement or feedback loop, or a sign that appears saying “you underdosed protease, take more next time”. The best you can do is try different sized meals over time with different doses of PERT, trying to reverse engineer your lipase:fat and protease:protein and amylase:carb ratios and continuously update them as you have new data.

It’s a lot of work, the feedback loop is slow, getting it “wrong” is painful physically and psychologically, and there are no vacations from it. Everything I eat, now that I have EPI, needs enzymes, and given the fact that I have automated insulin delivery to help manage insulin dosing, I am finding PERT to be a lot harder and more annoying (currently).

A comparison of dosing insulin and dosing enzymes. Insulin can cause hypo- or hyperlgycemia but there are tools (CGM and BG meters) and a feedback loop in diabetes. With enzymes, there is no fast feedback loop and underdosing is common. There is no ability to correct an underdose and there are multiple variables that can influence the outcome.

There’s no happy ending to this post, but this is one of the reasons why I am so interested in partnering with researchers to do research on EPI. There are a LOT of improvements that can be made, ranging from improving titration guidance of PERT to testing the efficacy of different over the counter enzymes to finding new technology that might begin to provide a feedback loop into EPI (either for short-term assessment or longer-term use for those who prefer it). If you’re someone interested in this type of research, please don’t hesitate to reach out (Dana@OpenAPS.org).

(PS, if you didn’t see them, I have other posts about EPI at DIYPS.org/EPI – including one about PS –  PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data! It’s one of the things I decided to build to help address the challenges I know those of us with EPI face every day.)


You can also contribute to a research study and help us learn more about EPI/PEI – take this anonymous survey to share your experiences with EPI-related symptoms!

Feeling hunger for the first time in two years after discovering Exocrine Pancreatic Insufficiency (EPI or PEI)

Now that I’ve been taking pancreatic enzyme replacement therapy (PERT) for a month and a half for my newly discovered exocrine pancreatic insufficiency (EPI), I’ve not only discovered that the GI symptoms I had are gone, but I’ve also gained something back: the sensation of hunger.

For two years, I’ve struggled to eat. I found a breakfast that I could eat that was higher fiber (albeit nontypical American breakfast food) and kept me full for hours. So many hours that I didn’t feel like eating at lunchtime.

Essentially, I would eat breakfast and maybe one other meal, and occasionally a snack. Far from three meals. I learned quickly that eating just because other people were eating made things worse (worse symptom severity, plus gave me more symptoms), so I studiously avoided eating just because that’s what I had done in the past or that’s what other people were doing.

Figuring out I had EPI and starting to dose PERT was a relief. I could tell from symptom reduction that it was working. And within a week or so, I started to feel hunger multiple times a day! Now I’m more regularly eating three small meals a day, and sometimes more (especially on after long runs). My meals are more likely to be a little bit smaller due to how I’m titrating my PERT dosing, so that plus my activity levels plus actually digesting my food when I eat it means that I’m eating more often now than I have over the last few years.

The only downside is that my brain is VERY unfamiliar with the sensation of hunger, and despite knowing I will not starve or even be hungry for very long, there seems to be a switch after three minutes where I go from recognizing hunger and starting to think about doing something to having already passed the point of no return where my number one priority becomes eating.

The timeline of my body becoming hungry (0 minutes), my brain recognizing hunger (1 minute), thinking about eating (2 minutes), deciding to eat (3 minuntes), and then a flip switching and I go from wanting to NEEDING to eat as soon as possible.

I’m guessing this is what toddlers feel like, and I have a lot more empathy for their hanger now after experiencing this! And like toddlers, hopefully my brain re-learns how to deal with and moderate the feelings of hunger soon.

(PS, if you didn’t see them, I have other posts about EPI at DIYPS.org/EPI)