CGM for primary care doctors: a new article in the BMJ

I was honored last year to be asked to write an article about the basics of continuous glucose monitoring (CGM) for primary care providers by the BMJ, which was released today online.

This, like most of my academic literature article writing, was an unpaid gig. So why did I do it?

Well, most people with diabetes are treated primarily by primary care providers (“GPs” or “PCPs” or “family doctors”, etc). It’s somewhat rare for most people with diabetes to see an endocrinologist! It also varies regionally, even within the same country. And, primary care providers obviously treat a lot of widely varying conditions, from acute to chronic, so they may not have time or energy to stay up to date on all treatment options for all conditions.

This therefore felt like a great opportunity to contribute some information about CGM, an incredibly useful piece of technology for anyone with diabetes who wants it, specifically written and targeted for primary care providers who may not have the exposure to CGM technology that endocrinology providers have had over the years. And, like most things, the technology (thankfully) has changed quite a bit. Accuracy, ease of use, cost, and many other factors have changed dramatically in the last almost two decades since CGMs were introduced on the market!

I sought out two fellow experts in CGM and diabetes technology to co-author the article with me. I asked Ben Wheeler, an excellent pediatric endocrinologist who has done quite a bit of research on “intermittently scanned” CGMs (isCGM); and Tamara Oser, who is the director of the Primary Care Diabetes Lab (and a parent and a spouse of people living with diabetes) and worked to facilitate uptake of CGM in primary care settings.

I’m also appreciative that a parent and teen with newly diagnosed diabetes and new experiences with CGM both reviewed this article when it was drafted and shared their perspective to it; as well as appreciative of valuable input from a friend with many years of experience with diabetes who has used 8 (!) different CGM systems.

We are starting to see a shift in adoption and coverage of CGM, thankfully. Historically, people with diabetes haven’t always had insurance cover CGM. Even if insurance does cover CGM, sometimes we have to fight an uphill battle every year to re-prove that we (still) have diabetes and that we still need CGM. Sometimes good outcomes from using CGM disqualifies us from the next year’s coverage of CGM (in which case we have to appeal our cases for coverage). It’s frustrating! That’s why it’s so nice to see increasing guidelines, recommendations, and even country-specific guidelines encouraging funding and coverage of CGM for people with all types of diabetes. The biggest latest news – as of yesterday (March 2, 2023) – was that in the U.S., Medicare will now be covering CGM for people with type 2 diabetes on insulin. This is a huge group of people who previously didn’t have CGM coverage before!

So here it is, just out today online (March 3, 2023), and projected to be in the March 25, 2023 print edition of the BMJ: an article on continuous glucose monitoring (CGM) for primary providers. I’m hoping it helps pave the way for more providers to feel comfortable prescribing CGM for more people with diabetes; increased their knowledge in working with people with diabetes who have CGM prescribed from other providers; and also reduce unconscious and conscious bias against people with diabetes being offered this important, life-changing and life-saving technology.

P.S. – if you can’t access the article from the link above, as a reminder I always store an accessible author copy of my research articles at DIYPS.org/research!

How to Pick Food (Fuel) For Ultramarathon Running

I’ve previously written about ultrarunning preparation and a little bit about how I approach fueling. But it occurred to me there might be others out there wondering exactly HOW to find fuel that works for them, because it’s an iterative process.

The way I approach fueling is based on a couple of variables.

First and foremost, everything has to be gluten free (because I have celiac). So that limits a lot of the common ultrarunning fuel options. Things like bars (some are GF, most are not), Uncrustables, PopTarts, and many other common recommendations in the ultra community just aren’t an option for me. Some, I can find or make alternatives to, but it’s worth noting that being gluten free for celiac (where cross-contamination is also an issue, not just the ingredients) or having a food allergy and being an ultrarunner can make things more challenging.

Then, I also have exocrine pancreatic insufficiency. This doesn’t limit what I eat, but it factors in to how I approach ideal fueling options, because I have to match the enzyme amounts to the amount of food I’m eating. So naturally, the pill size options I have of OTC enzymes (one is lipase only and covers ~6g of fat for me, the other is a multi-enzyme option that includes protease to cover protein, and only enough lipase to cover ~4g of fat for me; I also have one much larger that covers ~15g of fat but I don’t typically use this one while running) influence the portion sizes of what I choose.

That being said, I probably – despite EPI – still tend toward higher fat options than most people. This is in part because I have had type 1 diabetes for 20+ years. While I by no means consume a low c-a-r-b diet, I typically consume less than the people with insulin-producing pancreases in my life, and lean slightly toward higher fat options because a) my taste buds like them and b) they’ve historically had less impact on my glucose levels. Reason A is probably the main reason now, thanks to automated insulin delivery, but regardless of reason, 20+ years of a higher level than most people’s fat consumption means I’m also probably better fat-adapted for exercise than most people.

Plus, ultrarunning tends to be slower than shorter runs (like marathons and shorter for most people), so that’s also more amenable to fat and other nutrient digestion. So, ultrarunners in general tend to have more options in terms of not just needing “gu” and “gel” and “blocks” and calorie-sugar drinks as fuel options (although if that is what you prefer and works well for you, great!).

All of these reasons lead me toward generally preferring fuel portions that are:

  1. Gluten free with no cross-contamination risk
  2. ~20g of carbs
  3. ~10g of fat or less
  4. ~5-10g of protein or less

Overall, I shoot for consuming ~250 calories per hour. Some people like to measure hourly fuel consumption by calories. Others prefer carb consumption. But given that I have a higher tolerance for fat and protein consumption – thanks to the enzymes I need for EPI plus decades of practice – calories as a metric for hourly consumption makes sense for me. If I went for the level of carb intake many recommend for ultrarunners, I’d find it harder to consistently manage glucose levels while running for a zillion hours. I by no means think any of my above numbers are necessarily what’s best for anyone else, but that’s what I use based on my experiences to date as a rough outline of what to shoot for.

After I’ve thought through my requirements: gluten free, 250 calories per hour, and preferably no single serving portion size that is greater than 20ish grams of carbs or 10g of fat or 5-10g or protein, I can move on to making a list of foods I like and that I think would “work” for ultrarunning.

“Work” by my definition is not too messy to carry or eat (won’t melt easily, won’t require holding in my hands to eat and get them messy).

My initial list has included (everything here gluten free):

  • Oreos or similar sandwich type cookies
  • Yogurt/chocolate covered pretzels
  • PB or other filled pretzel nuggets
  • Chili cheese Fritos
  • Beef sticks
  • PB M&M’s
  • Reese’s Pieces
  • Snickers
  • Mini PayDays
  • Macaroons
  • Muffins
  • Fruit snacks
  • Fruit/date bars
  • GF (only specific flavors are GF which is why I’m noting this) of Honey Stinger Stroopwaffles

I wish I could include more chip/savory options on my lists, and that’s something I’ve been working on. Fritos are easy enough to eat from a snack size baggie without having to touch them with my hands or pull individual chips out to eat; I can just pour portions into my mouth. Most other chips, though, are too big and too ‘sharp’ feeling for my mouth to eat this way, so chili cheese Fritos are my primary savory option, other than beef sticks (that are surprisingly moist and easy to swallow on the run!).

Some of the foods I’ve tried from the above list and have eventually taken OFF my list include:

  • PB pretzel nuggets, because they get stale in baggies pretty fast and then they feel dry and obnoxious to chew and swallow.
  • Muffins – I tried both banana muffin halves and chocolate chip muffin halves. While they’re moist and delicious straight out of the oven, I found they are challenging to swallow while running (probably because they’re more dry).
  • Gluten free Oreos – actual Oreo brand GF Oreos, which I got burnt out on about the time I realized I had EPI, but also they too have a pretty dry mouthfeel. I’ve tried other brand chocolate sandwich cookies and also for some reason find them challenging to swallow. I did try a vanilla sandwich cookie (Glutino brand) recently and that is working better – the cookie is harder but doesn’t taste as dry – so that’s tentatively on my list as a replacement.

Other than “do I like this food” and “does it work for carrying on runs”, I then move on to “optimizing” my intake in terms of macronutrients.  Ideally, each portion size and item has SOME fat, protein, and carbs, but not TOO MUCH fat, protein and carbs.

Most of my snacks are some fat, a little more carb, and a tiny bit of protein. The outlier is my beef sticks, which are the highest protein option out of my shelf-stable running fuel options (7g of fat, 8g of protein). Most of the others are typically 1-3g of protein, 5-10g of fat (perfect, because that is 1-2 enzyme OTC pills), and 10-20g of carb (ideal, because it’s a manageable amount for glucose levels at any one time).

Sometimes, I add things to my list based on the above criteria (gluten free with no cross-contamination list; I like to eat it; not messy to carry) and work out a possible serving size. For example, the other day I was brainstorming more fuel options and it occurred to me that I like brownies and a piece of brownie in a baggie would probably be moist and nice tasting and would be fine in a baggie. I planned to make a batch of brownies and calculated how I would cut them to get consistent portion sizes (so I would know the macronutrients for enzymes).

However, once I made my brownies, and started to cut them, I immediately went “nope” and scratched them off my list for using on runs. Mainly because, I hate cutting them and they crumbled. The idea of having to perfect how to cook them to be able to cut them without them crumbling just seems like too much work. So I scratched them off my list, and am just enjoying eating the brownies as brownies at home, not during runs!

I first started taking these snacks on runs and testing each one, making sure that they tasted good and also worked well for me (digestion-wise) during exercise, not just when I was sitting around. All of them, other than the ones listed above for ‘dry’ reasons or things like brownies (crossed off because of the hassle to prepare), have stayed on the list.

I also started looking at the total amount of calories I was consuming during training runs, to see how close I was to my goal of ~250 calories per hour. It’s not an exact number and a hard and fast “must have”, but given that I’m a slower runner (who run/walks, so I have lower calorie burn than most ultrarunners), I typically burn in the ballpark of ~300-400 calories per hour. I generally assume ~350 calories for a reasonable average. (Note, again, this is much lower than most people’s burn, but it’s roughly my burn rate and I’m trying to show the process itself of how I make decisions about fuel).

Aiming for ~250 calories per hour means that I only have a deficit of 100 calories per hour. Over the course of a ~100 mile race that might take 30 hours, this means I’ll “only” have an estimated deficit of 3,000 calories. Which is a lot less than most people’s estimated deficit, both because I have a lower burn rate (I’m slower) and because, as described above and below, I am trying to be very strategic about fueling for a number of reasons, including not ending up under fueling for energy purposes. For shorter runs, like a 6 hour run, that means I only end up ~600 calories in deficit – which is relatively easy to make up with consumption before and after the run, to make sure that I’m staying on top of my energy needs.

It turns out, some of my preferred snacks are a lot lower and higher calories than each other! And this can add up.

For example, fruit snacks – super easy to chew (or swallow without much chewing). 20g of carb, 0g of fat or protein, and only 80 calories. Another easy to quickly chew and swallow option: a mini date (fruit) bar. 13g carb, 5g fat, 2 protein. And…90 calories. My beef stick? 7g of fat, 8g of protein, and only 100 calories!

My approach that works for me has been to eat every 30 minutes, which means twice per hour. Those are three of my favorite (because they’re easy to consume) fuel options. If I eat two of those in the same hour, say fruit snacks and the date bar, that’s only 170 calories. Well below the goal of 250 for the hour! Combining either with my beef stick (so 180 or 190 calories, depending), is still well below goal.

This is why I have my macronutrient fuel library with carbs, fat, protein, *and* calories (and sodium, more on that below) filled out, so I can keep an eye on patterns of what I tend to prefer by default – which is often more of these smaller, fewer calorie options as I get tired at the end of the runs, when it’s even more important to make sure I’m at (or near) my calorie goals.

Tracking this for each training run has been really helpful, so I can see my default tendency to choose “smaller” and “easier to swallow” – but that also means likely fewer calories – options. This is also teaching me that I need to pair larger calorie options with them or follow on with a larger calorie option. For example, I have certain items on my list like Snickers. I get the “share size” bars that are actually 2 individual bars, and open them up and put one in each baggie. ½ of the share size package (aka 1 bar) is 220 calories! That’s a lot (relative to other options), so if I eat a <100 calorie option like fruit snacks or a date bar, I try to make it in the same hour as the above average option, like the ½ snickers. 220+80 is 300 calories, which means it’s above goal for the hour.

And that works well for me. Sometimes I do have hours where I am slightly below goal – say 240 calories. That’s fine! It’s not precise. But 250 calories per hour as a goal seems to work well as a general baseline, and I know that if I have several hours of at or greater than 250 calories, one smaller hour (200-250) is not a big deal. But this tracking and reviewing my data during the run via my tracking spreadsheet helps make sure I don’t get on a slippery slope to not consuming enough fuel to match the demands I’m putting on my body.

And the same goes for sodium. I have read a lot of literature on sodium consumption and/or supplementation in ultrarunning. Most of the science suggests it may not matter in terms of sodium concentration in the blood and/or muscle cramps, which is why a lot of people choose sodium supplementation. But for me, I have a very clear, distinct feeling when I get not enough sodium. It is almost like a chemical feeling in my chest, and is a cousin (but distinct) feeling to feeling ketones. I’ve had it happen before on long hikes where I drank tons to stay hydrated and kept my glucose levels in range but didn’t eat snacks with sodium nor supplement my water. I’ve also had it happen on runs. So for me, I do typically need sodium supplementation because that chemical-like feeling builds up and starts to make me feel like I’m wheezing in my chest (although my lungs are fine and have no issues during this). And what I found works for me is targeting around 500mg/hour of sodium consumption, through a combination of electrolyte pills and food.

(Side note, most ultrarunning blogs I’ve read suggest you’ll be just fine based on food you graze at the aid station. Well, I do most of my ultras as solo endeavors – no grazing, everything is pre-planned – and even if I did do an organized race, because of celiac I can’t eat 95% of the food (due to ingredients, lack of labeling, and/or cross contamination)…so that just doesn’t work for me to rely on aid station food to supplement me sodium-wise. But maybe it would work for other people, it just doesn’t for me given the celiac situation.)

I used to just target 500mg/hour of sodium through electrolyte pills. However, as I switched to actually fueling my runs and tracking carbs, fat, protein, and calories (as described above), I realized it’d be just as easy to track sodium intake in the food, and maybe that would enable me to have a different strategy on electrolyte pill consumption – and it did!

I went back to my spreadsheet and re-added information for sodium to all of my food items in my fuel library, and added it to the template that I duplicate for every run. Some of my food items, just like they can be outliers on calories or protein or fat or carbs, are also outliers on sodium. Biggest example? My beef stick, the protein outlier, is also a sodium outlier: 370mg of sodium! Yay! Same for my chili cheese Fritos – 210mg of sodium – which is actually the same amount of sodium that’s in the type of electrolyte pills I’m currently using.

I originally had a timer set and every 45 minutes, I’d take an electrolyte pill. However, in the last year I gradually realized that sometimes that made me over by quite a bit on certain hours and in some cases, I ended up WAY under my 500mg sodium goal. I actually noticed this in the latter portion of my 82 mile run – I started to feel the low-sodium chest feeling that I get, glanced at my sheet (that I hadn’t been paying close attention to because of So. Much. Rain) and realized – oops – that I had an hour of 323mg of sodium followed by a 495mg hour. I took another electrolyte pill to catch up and chose some higher sodium snacks for my next few fuels. There were a couple hours earlier in the run (hours 4 and 7) where I had happened to – based on some of my fresh fuel options like mashed potatoes – to end up with over 1000mg of sodium. I probably didn’t need that much, and so in subsequent hours I learned I could skip the electrolyte pill when I had had mashed potatoes in the last hour. Eventually, after my 82-mile run when I started training long runs again, I realized that keeping an eye on my rolling sodium tallies and tracking it like I tracked calories, taking an electrolyte pill when my hourly average dropped <500mg and not based on a pre-set time when it was >500mg, began to work well for me.

And that’s what I’ve been experimenting with for my last half dozen runs, which has worked – all of those runs have ended up with a total average slightly above 500mg of sodium and slightly above 250 calories for all hours of the run!

An example chart that automatically updates (as a pivot table) summarizing each hour's intake of sodium and calories during a run. At the bottom, an average is calculated, showing this 6 hour run example achieved 569 mg/hr of sodium and 262 calories per hour, reaching both goals.

Now, you may be wondering – she tracks calories and sodium, what about fat and protein and carbs?

I don’t actually care about or use these in real-time for an hourly average; I use these solely as real-time decision in points as 1) for carbs, to know how much insulin I might need dependent on my glucose levels at the time (because I have Type 1 diabetes); and 2) the fat and protein is to make sure I take the right amount of enzymes so I can actually digest the fuel (because I have exocrine pancreatic insufficiency and can’t digest fuel without enzyme pills). I do occasionally look back at these numbers cumulatively, but for the most part, they’re solely there for real-time decision making at the moment I decide what to eat. Which is 95% of the time based on my taste buds after I’ve decided whether I need to factor in a higher calorie or sodium option!

For me, my higher sodium options are chili cheese Fritos, beef stick, yogurt covered pretzels.

For me, my higher calorie options are the ½ share size Snickers; chili cheese Fritos; Reese’s pieces; yogurt covered pretzels; GF honey stinger stroopwaffle; and 2 mini PayDay bars.

Those are all shelf-stable options that I keep in snack size baggies and ready to throw into my running vest.

Most of my ‘fresh’ food options, that I’d have my husband bring out to the ‘aid station’/turnaround point of my runs for refueling, tend to be higher calorie options. This includes ¼ of a GF PB&J sandwich (which I keep frozen so it lasts longer in my vest without getting squishy); ¼ of a GF ham and cheese quesadilla; a mashed potato cup prepared in the microwave and stuck in another baggie (a jillion, I mean, 690mg of sodium if you consume the whole thing but it’s occasionally hard to eat allll those mashed potatoes out of a baggie in one go when you’re not actually very hungry); sweet potato tots; etc.

So again, my recommendation is to find foods you like in general and then figure out your guiding principles. For example:

  • Do you have any dietary restrictions, food allergies or intolerances, or have already learned foods that your body Does Not Like while running?
  • Are you aiming to do carbs/hr, calories/hr, or something else? What amounts are those?
  • Do you need to track your fuel consumption to help you figure out how you’re not hitting your fuel goals? If so, how? Is it by wrappers? Do you want to start with a list of fuel and cross it off or tear it off as you go? Or like me, use a note on your phone or a drop down list in your spreadsheet to log it (my blog post here has a template if you’d like to use it)?

My guiding principles are:

  • Gluten free with no cross contamination risk (because celiac)
  • ~250 calories per hour, eating twice per hour to achieve this
  • Each fuel (every 30 min) should be less than ~20g of carb, ~10g of fat, and ~5-10g of protein
  • I also want ~500mg of sodium each hour through the 2x fuel and when needed, electrolyte pills that have 210mg of sodium each
  • Dry food is harder to swallow; mouthfeel (ability to chew and swallow it) is something to factor in.
  • I prefer to eat my food on the go while I’m run/walking, so it should be all foods that can go in a snack or sandwich size baggie in my vest. Other options (like chicken broth, soup, and messy food items) can be on my backup list to be consumed at the aid station but unless I have a craving for them, they are secondary options.
  • Not a hassle to make/prepare/measure out into individual serving sizes.

Find foods that you like, figure out your guiding principles, and keep revising your list as you find what options work well for you in different situations and based on your running needs!

Food (fuel) for ultramarathon running by Dana Lewis at DIYPS.org

Ultramarathon Races Are Exclusionary

Recently, I’ve been thinking about the feeling I have that ultrarunning races (ultramarathons) are exclusionary.

Running is theoretically very accessible: you go out and do it. No special equipment or clothes needed. Same for ultrarunning: go run a distance longer than a marathon (26.2 miles or ~42 kilometers). You don’t even have to do it in an organized “race”, as many of us run DIY or solo ultramarathons for training or in lieu of races (like I did for my 82 miler). Run 26.3 miles? Technically you’re an ultrarunner (although it’s more common for a 50k/31 mile race to be the first distance most people consider ‘ultra’).

For many people, though, an organized ‘race’ or event is important for a number of reasons. It provides a commitment device and a firm and hard deadline for which to train. It might be the only safe way to achieve a distance, with aid stations and volunteers to support achieving the endeavor, if they don’t have family or friends able to crew runs otherwise or lack safe places to run these distances. It also provides motivation and camaraderie of setting out to achieve the same goal as a group of other people at the same time. And of course, it provides competition – not only with one’s self to achieve their best that day, but also against other people.

Most of us, though, statistically aren’t racing in an ultramarathon for a podium place or top-whatever finish.

So why do the rules work to exclude so many people from participating in ultramarathons?

I’m talking about rules like those often found listed in the 200 mile ultramarathon race descriptions and rule handbooks that say that aid cannot be administered outside of the aid station. Crew may not hand anything to racers outside of the aid station:

  • Cowboy 200, runner manual last updated 8/16/22: “Crew is only allowed to assist runners at FULL/MANNED aid stations. No exceptions. Crew cannot give anything to or take anything from runners anywhere except at manned aid stations.”
  • Bigfoot 200, 2022 runner manual: “Pacers are not allowed to mule (carry items) for their runner. Pacers may not give their runner any aid, food or water unless it is an emergency situation, in which case the runner may be disqualified. Pacers are for safety, not for giving aid or gaining an advantage over fellow participants.” and “Crew may not meet their runner between aid”
  • Tahoe 200, 2022 runner manual: A full disqualification may be given if “Contacts crew anywhere between aid stations; Has crew leave items left for the runner anywhere along the course; Takes outside aid between aid stations”
  • Moab 240, 2022 runner manual – same as above Tahoe 2022
  • Cocodona 250, accessed January 2023: “Crew may not meet their runner at any point on the course other than designated crew access aid stations. Runners will be automatically disqualified for receiving aid from crew outside of crew access aid stations.”

It’s a thing in 100 miles races, too.

  • Western States 100, 2023 participant guide: “Runners may not accept aid or assistance from their crew or other spectators in between crew-accessible aid stations.” and “Pacers may not carry water, food, flashlights, shoes, clothing, or other supplies for their runner or provide any other type of mechanical or physical assistance to their runner on the course.”
  • Hardrock 100, 2022 guide: “No stashing of supplies along the course and no accepting aid except within 400 yards of a designated aid station.” and “Pacers may not carry water, food, flashlights, shoes, clothing, or other supplies for their runner or provide any other type of mechanical or physical assistance to their runner on the course.”

Why is this a problem?

Well, say that an ultrarunner has type 1 diabetes and uses an insulin pump and the insulin pump breaks. (Battery dies; the pump itself smashes against a rock and breaks the screen; or like in my 82 miler last year, the water busts the button panel and it is no longer operable.) If you have a backup pump and a crew member, in a non-race setting they’d simply bike or run or drive out to you (whatever was feasible and safe for them) and hand you the pump. You’d replace it, and continue on your way.

But according to the ‘rules’ of these ultramarathon ‘races’, you’d be immediately disqualified and stopped from continuing the ultramarathon. In order to not be disqualified, you’d have to wait until you got to the aid station to swap to a backup insulin pump. Sure, you’d likely have a back up insulin delivery method (syringe or insulin pen), but those are stop gaps and not a strategy to get you to the end of the race, most likely. Knowing those rules, it incentivizes non-optimal decision making of participants to choose to continue for miles (in some cases, could be hours to the next crew-accessible aid station), all the while racking up high blood sugar and low insulin levels that can be really, really, physically unpleasant and further put ultrarunners at risk of physical injury due to the altered state of unnaturally high blood sugar levels.

My guess is these rules are there to limit cheating and a non-fair playing field for those competing for podium. (In some cases, it might be to limit traffic on narrow parts of trail, etc. so for safety reasons, but for the most part the reasons cited seem to be about ‘a fair playing field’.)

But you know what? It’s already an unfair playing field between them and people with diabetes: because those runners without diabetes have a fully functioning insulin production system inbuilt to their body! People with diabetes are already at a disadvantage. Allowing someone to switch to their backup insulin pump outside of an aid station isn’t an unfair advantage or “cheating”, nor does it even “level the playing field” with the other runners.

Instead, the ability to get medical supplies for a chronic disease outside of an aid station reduces medical and physical injury risk to the participant.

Maybe you think I’m being dramatic about the rules of these races and feeling excluded from participating. Because in fact, I do feel excluded. I know things can happen and there’s no point in paying hundreds or thousands of dollars to participate in an event where if I need to switch medical equipment mid-race and outside of an aid station, that I’ll be disqualified and receive an automatic DNF (did not finish) on my race record.

Further, there are other races with even more stringent rules that point blank exclude people with diabetes from participating at all in their races.

Yes, really.

In 2021, UTMB (one of the world’s top ultrarunning race series) announced a new medical policy (based on the Quartz Program) that forbids use of any substance on the WADA (World Anti-Doping Agency) Prohibited List that would require a TUE (therapeutic use exemption) within 7 days prior to competition or during competition.

Guess what’s on the WADA Prohibited List? Insulin.

So if you use insulin and are an athlete in another sport, you get a TUE approved and you’re allowed to participate in your sport despite using insulin for insulin-requiring diabetes.

But as a person with diabetes, you’re banned from participating in UTMB’s races! People with insulin-requiring diabetes can’t go 7 days prior to an event without insulin, nor can we go the entire race (hello, 105 miles takes a long time) without insulin. So this means we cannot participate.

This is dumb and outright exclusionary. There’s other people with healthcare conditions who are now outright banned from participating in UTMB races, too. The same exclusionary ‘health’ “program” has also been used by the Golden Trail Running Series.

This makes ultrarunning exclusionary for people with most chronic illnesses.

Think I’m being dramatic again? Check out this quote from an interview with the organizer of the health ‘program’ that UTMB used to generate this list of requirements:

“Whether the athlete is under the influence of drugs or sick, our role consists of protecting them and therefore stop them from starting the race.”

They outright say they’re trying to stop athletes from starting the race, under the guise of policing what is healthy and safe for trail and ultrarunning. It doesn’t allow for individual evaluation.

Point blank: I’m excluded, and so are many other people with chronic illnesses, despite the fact that we are likely in better health than many other prospective participants of the race, regardless of chronic illness.

Personally, I think having a chronic illness, as hard as it makes ultrarunning, makes me better prepared and a better ultrarunner: I am very experienced with listening to my body and adjusting to challenging situations and dealing with physical and medical adversity. I do ultramarathons in part because they are hard and challenging. They’re hard and challenging for everyone! That’s why so few (relatively speaking) people run ultramarathons. If it was easy, everyone would have done it.

But no one should be prevented from entering a race because of living with a chronic illness.

If you’re willing to put in the training and cover the miles and plan what you need to do in order to achieve this with your medical devices and life-critical medications? You should do so. You should not be discouraged from taking the best possible care of your body before, during, and after an ultramarathon. That is what these policies do at best: at worst they exclude you outright from entering the race.

Race directors and race organizers, your ultramarathon policies are exclusionary. You should fix them.

Fellow ultrarunners, I encourage you to ask race directors to update their policies, too.

How?

Take a leaf out of Tunnel Hill 100’s book. They say (bold emphasis mine):

“USATF SPECIAL NOTICE: No American, or World Record, including age group records, will be recognized for any athlete who:

1) receives aid outside of a designated Aid Station area, OR

2) uses a pacer who is not entered in the race. These rules fall under the “unfair advantage” rules.

NOTE: Don’t worry about these rules if you aren’t going to set any records other than your own personal records.

This is how it should be done: make it clear what rules apply to elite/pro runners (aka podium/top 10/whatever places get rank or $$$) and which ones do NOT apply to the rest of us.

Don’t make people with chronic diseases pay yet another time tax to have to contact the race director and (in the US) ask for an accommodation under the Americans with Disabilities Act. Or point out, if declined, that it’s illegal to exclude people with disabilities (which includes people with most chronic diseases). We do enough work and already pay a lot of “time tax” for acquiring health supplies and managing our chronic diseases; don’t put MORE hoops in front of us to be able to participate and run.

That’s not equitable, nor fun, and it’s yet another barrier to keep more people out of running these races and events.

Functional Self-Tracking is The Only Self-Tracking I Do

“I could never do that,” you say.

And I’ve heard it before.

Eating gluten free for the rest of your life, because you were diagnosed with celiac disease? Heard that response (I could never do that) for going on 14 years.

Inject yourself with insulin or fingerstick test your blood glucose 14 times a day? Wear an insulin pump on your body 24/7/365? Wear a CGM on your body 24/7/365?

Yeah, I’ve heard you can’t do that, either. (For 20 years and counting.) Which means I and the other people living with the situations that necessitate these behaviors are…doing this for fun?

We’re not.

More recently, I’ve heard this type of comment come up about tracking what I’m eating, and in particular, tracking what I’m eating when I’m running. I definitely don’t do that for fun.

I have a 20+ year strong history of hating tracking things, actually. When I was diagnosed with type 1 diabetes, I was given a physical log book and asked to write down my blood glucose numbers.

“Why?” I asked. They’re stored in the meter.

The answer was because supposedly the medical team was going to review them.

And they did.

And it was useless.

“Why were you high on February 22, 2003?”

Whether we were asking this question in March of 2003 or January of 2023 (almost 20 years later), the answer would be the same: I have no idea.

BG data, by itself, is like a single data point for a pilot. It’s useless without the contextual stream of data as well as other metrics (in the diabetes case, things like what was eaten, what activity happened, what my schedule was before this point, and all insulin dosed potentially in the last 12-24h).

So you wouldn’t be surprised to find out that I stopped tracking. I didn’t stop testing my blood glucose levels – in fact, I tested upwards of 14 times a day when I was in high school, because the real-time information was helpful. Retrospectively? Nope.

I didn’t start “tracking” things again (for diabetes) until late 2013, when we realized that I could get my CGM data off the device and into the laptop beside my bed, dragging the CGM data into a CSV file in Dropbox and sending it to the cloud so an app called “Pushover” would make a louder and different alarm on my phone to wake me up to overnight hypoglycemia. The only reason I added any manual “tracking” to this system was because we realized we could create an algorithm to USE the information I gave it (about what I was eating and the insulin I was taking) combined with the real-time CGM data to usefully predict glucose levels in the future. Predictions meant we could make *predictive* alarms, instead of solely having *reactive* alarms, which is what the status quo in diabetes has been for decades.

So sure, I started tracking what I was eating and dosing, but not really. I was hitting buttons to enter this information into the system because it was useful, again, in real time. I didn’t bother doing much with the data retrospectively. I did occasional do things like reflect on my changes in sensitivity after I got the norovirus, for example, but again this was mostly looking in awe at how the real-time functionality of autosensitivity, an algorithm feature we designed to adjust to real-time changes in sensitivity to insulin, dealt throughout the course of being sick.

At the beginning of 2020, my life changed. Not because of the pandemic (although also because of that), but because I began to have serious, very bothersome GI symptoms that dragged on throughout 2020 and 2021. I’ve written here about my experiences in eventually self-diagnosing (and confirming) that I have exocrine pancreatic insufficiency, and began taking pancreatic enzyme replacement therapy in January 2022.

What I haven’t yet done, though, is explain all my failed attempts at tracking things in 2020 and 2021. Or, not failed attempts, but where I started and stopped and why those tracking attempts weren’t useful.

Once I realized I had GI symptoms that weren’t going away, I tried writing down everything I ate. I tried writing in a list on my phone in spring of 2020. I couldn’t see any patterns. So I stopped.

A few months later, in summer of 2020, I tried again, this time using a digital spreadsheet so I could enter data from my phone or my computer. Again, after a few days, I still couldn’t see any patterns. So I stopped.

I made a third attempt to try to look at ingredients, rather than categories of food or individual food items. I came up with a short list of potential contenders, but repeated testing of consuming those ingredients didn’t do me any good. I stopped, again.

When I first went to the GI doctor in fall of 2020, one of the questions he asked was whether there was any pattern between my symptoms and what I was eating. “No,” I breathed out in a frustrated sigh. “I can’t find any patterns in what I’m eating and the symptoms.”

So we didn’t go down that rabbit hole.

At the start of 2021, though, I was sick and tired (of being sick and tired with GI symptoms for going on a year) and tried again. I decided that some of my “worst” symptoms happened after I consumed onions, so I tried removing obvious sources of onion from my diet. That evolved to onion and garlic, but I realized almost everything I ate also had onion powder or garlic powder, so I tried avoiding those. It helped, some. That then led me to research more, learn about the categorization of FODMAPs, and try a low-FODMAP diet in mid/fall 2021. That helped some.

Then I found out I actually had exocrine pancreatic insufficiency and it all made sense: what my symptoms were, why they were happening, and why the numerous previous tracking attempts were not successful.

You wouldn’t think I’d start tracking again, but I did. Although this time, finally, was different.

When I realized I had EPI, I learned that my body was no longer producing enough digestive enzymes to help my body digest fat, protein, and carbs. Because I’m a person with type 1 diabetes and have been correlating my insulin doses to my carbohydrate consumption for 20+ years, it seemed logical to me to track the amount of fat and protein in what I was eating, track my enzyme (PERT) dosing, and see if there were any correlations that indicated my doses needed to be more or less.

My spreadsheet involved recording the outcome of the previous day’s symptoms, and I had a section for entering multiple things that I ate throughout the day and the number of enzymes. I wrote a short description of my meal (“butter chicken” or “frozen pizza” or “chicken nuggets and veggies”), the estimate of fat and protein counts for the meal, and the number of enzymes I took for that meal. I had columns on the left that added up the total amount of fat and protein for the day, and the total number of enzymes.

It became very apparent to me – within two days – that the dose of the enzymes relative to the quantity of fat and protein I was eating mattered. I used this information to titrate (adjust) my enzyme dose and better match the enzymes to the amount of fat or protein I was eating. It was successful.

I kept writing down what I was eating, though.

In part, because it became a quick reference library to find the “counts” of a previous meal that I was duplicating, without having to re-do the burdensome math of adding up all the ingredients and counting them out for a typical portion size.

It also helped me see that within the first month, I was definitely improving, but not all the way – in terms of fully reducing and eliminating all of my symptoms. So I continued to use it to titrate my enzyme doses.

Then it helped me carefully work my way through re-adding food items and ingredients that I had been avoiding (like onions, apples, and pears) and proving to my brain that those were the result of enzyme insufficiency, not food intolerances. Once I had a working system for determining how to dose enzymes, it became a lot easier to see when I had slight symptoms from slightly getting my dosing wrong or majorly mis-estimating the fat and protein in what I was eating.

It provided me with a feedback loop that doesn’t really exist in EPI and GI conditions, and it was a daily, informative, real-time feedback loop.

As I reached the end of my first year of dosing with PERT, though, I was still using my spreadsheet. It surprised me, actually. Did I need to be using it? Not all the time. But the biggest reason I kept using it relates to how I often eat. I often look at an ‘entree’ for protein and then ‘build’ the rest of my meal around that, to help make sure I’m getting enough protein to fuel my ultrarunning endeavors. So I pick my entree/main thing I’m eating and put it in my spreadsheet under the fat and protein columns (=17 g of fat, =20 g of protein), for example, then decide what I’m going to eat to go with it. Say I add a bag of cheddar popcorn, so that becomes (=17+9 g of fat) and (=20+2 g of protein), and when I hit enter, those cells now tell me it’s 26 g of fat and 22 g of protein for the meal, which tells my brain (and I also tell the spreadsheet) that I’ll take 1 PERT pill for that. So I use the spreadsheet functionally to “build” what I’m eating and calculate the total grams of protein and fat; which helps me ‘calculate’ how much PERT to take (based on my previous titration efforts I know I can do up to 30g of fat and protein each in one PERT pill of the size of my prescription)

Example in my spreadsheet showing a meal and the in-progress data entry of entering the formula to add up two meal items' worth of fat and protein

Essentially, this has become a real-time calculator to add up the numbers every time I eat. Sure, I could do this in my head, but I’m usually multitasking and deciding what I want to eat and writing it down, doing something else, doing yet something else, then going to make my food and eat it. This helps me remember, between the time I decided – sometimes minutes, sometimes hours in advance of when I start eating and need to actually take the enzymes – what the counts are and what the PERT dosing needs to be.

I have done some neat retrospective analysis, of course – last year I had estimated that I took thousands of PERT pills (more on that here). I was able to do that not because it’s “fun” to track every pill that I swallow, but because I had, as a result of functional self-tracking of what I was eating to determine my PERT dosing for everything I ate, had a record of 99% of the enzyme pills that I took last year.

I do have some things that I’m no longer entering in my spreadsheet, which is why it’s only 99% of what I eat. There are some things like a quick snack where I grab it and the OTC enzymes to match without thought, and swallow the pills and eat the snack and don’t write it down. That maybe happens once a week. Generally, though, if I’m eating multiple things (like for a meal), then it’s incredibly useful in that moment to use my spreadsheet to add up all the counts to get my dosing right. If I don’t do that, my dosing is often off, and even a little bit “off” can cause uncomfortable and annoying symptoms the rest of the day, overnight, and into the next morning.

So, I have quite the incentive to use this spreadsheet to make sure that I get my dosing right. It’s functional: not for the perceived “fun” of writing things down.

It’s the same thing that happens when I run long runs. I need to fuel my runs, and fuel (food) means enzymes. Figuring out how many enzymes to dose as I’m running 6, 9, or 25 hours into a run gets increasingly harder. I found that what works for me is having a pre-built list of the fuel options; and a spreadsheet where I quickly on my phone open it and tap a drop down list to mark what I’m eating, and it pulls in the counts from the library and tells me how many enzymes to take for that fuel (which I’ve already pre-calculated).

It’s useful in real-time for helping me dose the right amount of enzymes for the fuel that I need and am taking every 30 minutes throughout my run. It’s also useful for helping me stay on top of my goal amounts of calories and sodium to make sure I’m fueling enough of the right things (for running in general), which is something that can be hard to do the longer I run. (More about this method and a template for anyone who wants to track similarly here.)

The TL;DR point of this is: I don’t track things for fun. I track things if and when they’re functionally useful, and primarily that is in real-time medical decision making.

These methods may not make sense to you, and don’t have to.

It may not be a method that works for you, or you may not have the situation that I’m in (T1D, Graves, celiac, and EPI – fun!) that necessitates these, or you may not have the goals that I have (ultrarunning). That’s ok!

But don’t say that you “couldn’t” do something. You ‘couldn’t’ track what you consumed when you ran or you ‘couldn’t’ write down what you were eating or you ‘couldn’t’ take that many pills or you ‘couldn’t’ inject insulin or…

You could, if you needed to, and if you decided it was the way that you could and would be able to achieve your goals.

How to Find the Slope of the Trend Line in A Graph With Google Sheets

I’ve been using Google Sheets for tracking and illustrating data for a number of reasons, such as tracking macronutrient and enzyme consumption patterns to help me understand my experiences with exocrine pancreatic insufficiency (EPI). It took me a while to figure out there was an easy way to display slope, though, to quantify what the trendline was.

Once you have a chart with your data, you can go into the “Customize” tab on the right and scroll down. Under “Series”, you can select which series you want, then scroll down and click “Trendline” to make the trendline appear. The customize menu then expands with trendline options.

Example of the default options for displaying a trendline

I had never noticed this before, but “Label” is set to default to “Custom”. This creates a label that defaults to “Trendline __YourSeriesName___”. In the example I’m showing here, I have series A labeled as “Var A”, so if I turn the Trendline on, it defaults to adding the “Custom” label of Trendline Var A.

But you can change this!

Click the dropdown where it says “Custom” and select “Use Equation”.

Example for trendline showing the label to 'use equation' option

Now it will show the label as the y=mx+b equation, so you can find out the slope (m) of your trendline.

In my example this means the slope of the Var A green line is 0.267.

You can modify this name, though, and get the best of both worlds. Click on the equation in the legend, and you will get an editable text box. I like to put the series name (e.g., Var A) in front of the equation so I can more easily see at a glance which series trend line it is explaining:

Example showing the custom text label after 'use equation' is selected to then edit and add back the series name along with the numeric formula

In my particular case, I want a quick glance of the slope, so I modify mine to read (Var A) 0.267 and (Var B) 0.061.

Example of trendline now showing the numeric equation and the series name for easier understanding of the graph

The only downside to this is the custom names will not automatically update. So if your brain can handle seeing the full mx+B equation, it might be better to leave it with the default equation as the trendline label name without modifying it at all, so it hopefully updates if you update the data on your graph. Otherwise, you’ll want to make a mental note to come back and update this manually by re-toggling the variable to equation and then editing it again to show the updated slope.

Two New Children’s Books – And How I Illustrated Them Without Being An Illustrator

I wrote two new books! You can find “Cooper’s Crutches” and “Chloe’s Cookies” on Amazon in paperback and Kindle formats.

Two children's books lay on the carpet: Cooper's Crutches and Chloe's Cookies, both written by Dana M. Lewis

One of these books I wrote years ago, about a month or so after I broke my ankle, inspired by the initial reactions from one of my nephews about me being on crutches. This new book is called Cooper’s Crutches.

I let it sit for several years, though, because I didn’t have illustrations for it. I’ve used a different illustrator or artist for each of my books so far.

A few weeks ago, though, I started thinking about experimenting with AI-driven illustrations for various projects, including wondering whether I could illustrate a children’s book or other projects with it.

The answer is: not yet. It’s hard to create a character who persists throughout image generation for enough scenes that can fit a two-dozen page storyline, although it would probably work for one or two images! (Especially if you managed to AI-illustrate a character that you could then place in various AI-illustrated scenes. The challenge is also having different poses for the same character, to illustrate a story.)

It then occurred to me to search around and I stumbled across a library of free, open source illustrations. Woohoo! Maybe those would work. Actually, I couldn’t even download that one due to a bug in their site, so I started searching (now that I knew to look for it) and found several other sets of illustrations. I even found a site called Blush that had a series of illustrations by various artists, and a web interface (GUI) that allowed you to modify images slightly then download them.

It’s like paper dolls, but digital – you can adjust the coloring of the hair, hair style, accessories, etc to modify the illustrated character.

I gave it a try, building some illustrations and downloading them. I then did some DIY-ing again in PowerPoint to modify them to help illustrate the full story in my children’s book. I printed a proof copy, but the versions I had downloaded for free were too low resolution and were fuzzy. However, the idea as a whole had worked great! I signed up for a free trial of the “Pro” version of Blush which enabled me to download both high-resolution PNG (image) files as well as SVG files.

Having SVG files theoretically would enable me to further modify and customize these, but as a non-illustrator even though I could load them in Figma and modify them, I still struggled to export them as high-enough resolution to work for printing in a book. I gave up and went back to DIY-ing the modifications in PowerPoint. They’re not perfect, but for the use case of my books (for a very small, niche audience), I doubt they care that they’re not perfect.

Here’s a selection of a few of the pages (not in order) in Cooper’s Crutches:

Excerpt images from Cooper's Crutches by Dana M. Lewis

At the same time that I started playing with these illustrations, I wondered whether I had any more ideas for books that I could illustrate at the same time with the same methods. I had had Cooper’s book written and waiting to illustrate; I now had a method to illustrate, but I wasn’t sure what story to illustrate.

But like all of my children’s books, inspiration again struck based on a situation and conversation I had with one of my nieces. She’s newly lactose intolerant and is taking lactase any time she has milk, like with milk and cookies for a bedtime snack. Lactase is an enzyme…and I’ve been taking enzymes of another sort this year, for exocrine pancreatic insufficiency.

Thus the next book, Chloe’s Cookies, was created!

Here’s a selection of a few of the pages (not in order) in the book:

Excerpt images from Chloe's Cookies, by Dana M. Lewis

Both Cooper’s Crutches and Chloe’s Cookies are illustrated with illustrations from a variety of artists who make their work available on Blush, including: Veronica Iezzi; Susana Salas; Pau Barbaro; Ivan Mesaroš; Mariana Gonzalez Vega; Deivid Saenz; and Cezar Berje.

The neat thing about Blush is their license: you can use the illustrations in any way, including commercial products, and you can modify or combine it with other works (like I did, modifying the images and combining illustrations from various artists) however you like.

I think I’ve likely maximized my use of Blush between these two books; unless other collections get uploaded in the future. But if you need a handful of illustrations that you can customize, definitely check it out!

And if you have ideas for other cool illustration libraries that I could use for future books, please let me know! (Or if you’re an artist who would like to contribute to one of my future books. :) )

TLDR:

I have two new children’s books, and you can find “Cooper’s Crutches” and “Chloe’s Cookies” on Amazon in paperback and Kindle formats.

Illustrating Children's Books without being an illustrator, plus introducting two new children's books by Dana M. Lewis

One Year of Pancreatic Enzyme Replacement Therapy for Exocrine Pancreatic Insufficiency (EPI or PEI)

I’ve had exocrine pancreatic insufficiency (EPI or PEI) for a full year now and have been taking pancreatic enzyme replacement therapy (PERT) ever since diagnosis.

I’ve written about what EPI is, what it’s like to go on PERT, and a variety of other posts (such as how I ultimately taught myself to titrate and adjust my dosing of PERT based on what I am eating) in the last year – you can see all my EPI posts listed at DIYPS.org/EPI. I also wrote recently about estimating the costs of PERT for a year, in which I had tallied up the number of PERT pills I had taken so far in the year. Since I’ve now hit the one year mark, I wanted to revisit that math.

In 365 days of pancreatic enzyme replacement therapy, I have consumed (at least) 3,277 pills.

That’s an average of 8.98 pills per day!

As I previously wrote, the number of pills is in part because I’m trying to lower the total costs (to everyone involved in paying for it) of my PERT by taking a mix of prescription PERT and OTC enzymes to try to balance effective dosing, cost, and the number of pills I swallow. I take one pill with my standard breakfast, so the remaining ~8 average pills are usually split between lunch, dinner, and/or a snack if I have one. (This is also influenced by my ultrarunning where I typically take ~2 pills every 30 minutes with my snacks/fuel for running, so long training days of 4 hours would involve 8 or more pills just for running fuel; obviously longer runs would involve even more, which drives the pills/day average higher.) If I wanted to reduce the total number of pills, I could by driving up the cost by using bigger, prescription PERT pills in lieu of some of the OTC options. However, most of the time, 3-4 pills per meal mixed between prescription and OTC is doable for me. I typically would choose to round up more PERT and reduce OTC pill count when I’m less certain about the macronutrient content of the meal or I want more confidence in better outcomes.

Speaking of better outcomes – is PERT effective?

For me, yes!

Overall, I feel so much better. Most of the time, I hardly ever have ANY symptoms (such as gas, bloating, or feeling icky) let alone my more extreme symptoms of “disrupting” my GI system. In the year of taking PERT, 78% of the time I had no disruption or any noticeable symptoms.

The average length of time between days with noticeable symptoms was 5.37 days.

And, if you look at the second half of the year, this increased quite a bit: 88% of the time I had no noticeable symptoms and the streak length of days between symptom days increased to 6.81 average days! The max streak is now 28 days (and counting)!

Showing the increasing length of streaks of consecutive days where I did not have any GI symptoms. The trend line shows a steady increase in the length of these streaks throughout the year.

That’s approaching a full month without any GI symptoms (woohoo) of any kind, and means less than 1 or 2 instances of symptoms per month for me in the last several months. That’s probably better than average for most people, even people without known GI conditions, and getting a lot closer back to my personal level of “normal”.

And obviously, this is continuing to increase over time as I improve my PERT dosing strategy.

This is pretty meaningful to think about.

PERT made a difference overall straight away, but I was also starting with very small portions of food and a very restricted diet. (This is because before I realized I had EPI I had done all kinds of behavioral gymnastics to try to eliminate foods like onion, garlic, and other foods that seemed to cause issues). So first I figured out PERT successfully for what I was eating; then carefully expanded my portion sizes back to typical quantities of food; then slowly expanded my diet to cover all the foods I used to eat before I started having all my GI problems.

It very much felt like I had three phases this year:

  • Phase 1: Use PERT to cover small quantities of small varieties of food. Figure out what foods I could eat that could “fit” into one PERT pill.
  • Phase 2: Start to figure out what quantities of food I wanted to eat, and get the PERT to match the food.
  • Phase 3: Finish expanding out my food choices to cover everything I was eating before and tackling all my “firsts” with PERT.

You can see this evolution in my diet, too, when you look at the relative changes in the amount of fat and protein I have eaten over the course of the year. (The one big obvious outlier on the graph in October is my 82 mile ultramarathon where I ate every 30 minutes for 25 hours!) There’s been a slight increase in my fat consumption over the course of the year, and protein consumption has stayed relatively flat as I’ve been making a very conscious effort to eat enough protein to fuel my ultrarunning endeavors throughout the year.

You can then see the relationship with increased number of pills (albeit pills with different amounts of lipase) over the course of the year, relative to the fat and protein consumed.

Displaying lines showing the relative amounts of fat and protein consumed throughout the year, plus the number of enzyme pills per day throughout 2022.

(Note that the pills per day is using a hidden right axis, whereas the fat and protein share the same left axis numbers, also not shown)

For anyone who is new (just diagnosed or recently diagnosed within a few weeks or months) to EPI, here’s what I would hope you take away:

  1. PERT works, but it needs to match what you are eating. Come up with a strategy (here’s mine – you can use it!) to adjust your dosing to match what you are eating. What you eat changes, and so should your PERT dosing.
  2. Things will improve over time, and you will get more effective at matching your dosing to what you are eating. You should be able to have more and more “streaks” of days without symptoms, or with reduced symptoms. However, this may take a few months, because you’ll likely also be – at the same time – re-expanding your variety of foods that you’re eating. The combination of eating more and different foods AND tweaking your dosing can make it take a little bit longer to figure it all out.
  3. If you’re not seeing success, talk with your doctor. There are different sizes of PERT pills – if you’re struggling to take X number of pills, you may be able to take fewer pills of a bigger size. There are different brands of PERT – so if one isn’t working for you (after you match your dosing to how much fat and protein is in each meal), you can switch and try another brand. There are also OTC options, which you can use to “top off” your prescription PERT or substitute, but you need to have an effective strategy for adjusting your dose that you can translate to your OTCs to be sure that they’re working.
One year of pancreatic enzyme replacement therapy for EPI by Dana M. Lewis

(PS – you can find my previous posts about EPI at DIYPS.org/EPI – and make sure you check out PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency!)


You can also contribute to a research study and help us learn more about EPI/PEI – take this anonymous survey to share your experiences with EPI-related symptoms!

Looking Back Through 2022 (What You May Have Missed)

I ended up writing a post last year recapping 2021, in part because I felt like I did hardly anything – which wasn’t true. In part, that was based on my body having a number of things going on that I didn’t know at the time. I figured those out in 2022 which made 2022 hard and also provided me with a sense of accomplishment as I tackled some of these new challenges.

For 2022, I have a very different feeling looking back on the entire year, which makes me so happy because it was night and day (different) compared to this time last year.

One major example? Exocrine Pancreatic Insufficiency.

I started taking enzymes (pancreatic enzyme replacement therapy, known as PERT) in early January. And they clearly worked, hooray!

I quickly realized that like insulin, PERT dosing needed to be based on the contents of my meals. I figured out how to effectively titrate for each meal and within a month or two was reliably dosing effectively with everything I was eating and drinking. And, I was writing and sharing my knowledge with others – you can see many of the posts I wrote collected at DIYPS.org/EPI.

I also designed and built an open source web calculator to help others figure out their ratios of lipase and fat and protease and protein to help them improve their dosing.

I even published a peer-reviewed journal article about EPI – submitted within 4 months of confirming that I had it! You can read that paper here with an analysis of glucose data from both before and after starting PERT. It’s a really neat example that I hope will pave the way for answering many questions we all have about how particular medications possibly affect glucose levels (instead of simply being warned that they “may cause hypoglycemia or hyperglycemia” which is vague and unhelpful.)

I also had my eyes opened to having another chronic disease that has very, very expensive medication with no generic medication option available (and OTCs may or may not work well). Here’s some of the math I did on the cost of living with EPI and diabetes (and celiac and Graves) for a year, in case you missed it.

Another other challenge+success was running (again), but with a 6 week forced break (ha) because I massively broke a toe in July 2022.

That was physically painful and frustrating for delaying my ultramarathon training.

I had been successfully figuring out how to run and fuel with enzymes for EPI; I even built a DIY macronutrient tracker and shared a template so others can use it. I ran a 50k with a river crossing in early June and was on track to target my 100 mile run in early fall.

However with the broken toe, I took the time off needed and carefully built back up, put a lot of planning into it, and made my attempt in late October instead.

I succeeded in running ~82 miles in ~25 hours, all in one go!

I am immensely proud of that run for so many reasons, some of which are general pride at the accomplishment and others are specific, including:

  • Doing something I didn’t think I could do which is running all day and all night without stopping
  • Doing this as a solo or “DIY” self-organized ultra
  • Eating every 30 minutes like clockwork, consuming enzymes (more than 92 pills!), which means 50 snacks consumed. No GI issues, either, which is remarkable even for an ultrarunner without EPI!
  • Generally figuring out all the plans and logistics needed to be able to handle such a run, especially when dealing with type 1 diabetes, celiac, EPI, and Graves
  • Not causing any injuries, and in fact recovering remarkably fast which shows how effective my training and ‘race’ strategy were.

On top of this all, I achieved my biggest-ever running year, with more than 1,333 miles run this year. This is 300+ more than my previous best from last year which was the first time I crossed 1,000 miles in a year.

Professionally, I did quite a lot of miscellaneous writing, research, and other activities.

I spent a lot of time doing research. I also peer reviewed more than 24 papers for academic journals. I was asked to join an editorial board for a journal. I served on 2 grant review committees/programs.

I also wrote a lot.

*by ton, I mean way more than the past couple of years combined. Some of that has been due to getting some energy back once I’ve fixed missing enzyme and mis-adjusted hormone levels in my body! I’m up to 40+ blog posts this year.

And personally, the punches felt like they kept coming, because this year we also found out that I have Graves’ disease, taking my chronic disease count up to 4. Argh. (T1D, celiac, EPI, and now Graves’, for those curious about my list.)

My experience with Graves’ has included symptoms of subclinical hyperthyroidism (although my T3 and T4 are in range), and I have chosen to try thyroid medication in order to manage the really bothersome Graves’-related eye symptoms. That’s been an ongoing process and the symptoms of this have been up and down a number of times as I went on medication, reduced medication levels, etc.

What I’ve learned from my experience with both EPI and Graves’ in the same year is that there are some huge gaps in medical knowledge around how these things actually work and how to use real-world data (whether patient-recorded data or wearable-tracked data) to help with diagnosis, treatment (including medication titration), etc. So the upside to this is I have quite a few new projects and articles coming to fruition to help tackle some of the gaps that I fell into or spotted this year.

And that’s why I’m feeling optimistic, and like I accomplished quite a bit more in 2022 than in 2021. Some of it is the satisfaction of knowing the core two reasons why the previous year felt so physically bad; hopefully no more unsolved mysteries or additional chronic diseases will pop up in the next few years. Yet some of it is also the satisfaction of solving problems and creating solutions that I’m uniquely poised, due to my past experiences and skillsets, to solve. That feels good, and it feels good as always to get to channel my experiences and expertise to try to create solutions with words or code or research to help other people.

How To Dose Pancreatic Enzyme Replacement Therapy (PERT) By What You Are Eating – And A Free Web Calculator To Calculate Enzyme Dosing

PS – check out PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data!

I’ve had exocrine pancreatic insufficiency (known as EPI or PEI) for a year now. I have had type 1 diabetes for 20+ years and am experienced in adjusting my medication (previously insulin) in response to everything that I eat or drink.

With EPI, though, most people are given a static prescription, such as one saying “take 3 pills with each meal”.

Well, what if every meal is not the same size?

Let’s think about a couple of hypothetical meals.

Meal A: Baked chicken, sweet potato, and broccoli. This meal likely results in ~31 grams of carbohydrates; 7 grams of fat; and ~30 grams of protein.

How would you dose for this meal? Most people do what they are told and dose based on the fat content of the meal. If they typically take 3 pills, they may take all 3 pills or take fewer pills if this is less fat than their typical meal.

Many people post in EPI social media groups post about restaurant dinners that sound like this complaining about side effects they experience with this type of meal. The commonly mentioned theory is that maybe the chicken is cooked in oil. However, the entire meal is so low in fat compared to other meals that it is unlikely to be the fat content causing symptoms if the typical meal dose of PERT is used, even if the chicken is cooked in oil.

Let’s discuss another meal.

Meal B: A bowl of chili topped with cheddar cheese and a piece of cornbread.

This meal results in ~45 grams of carbs; ~30 grams of fat; and ~42 grams of protein.

The fat content between these two meals is quite a bit different (7 grams of fat versus 30 grams of fat). Yet, again, most people are told simply to dose by the amount of fat, so someone might take a lower dose for the chicken meal because it has so little fat relative to other meals.

This could result in symptoms, though. The pancreas actually produces THREE kinds of enzymes. That’s why pancreatic enzyme replacement therapy medicine, called pancrelipase as a common name, has THREE types of enzymes: lipase, to help digest fat; protease, to help digest protein; and amylase, to help digest carbohydrates. A typical PERT pill has different amounts of these three enzymes, although it is usually described by the size/quantity of lipase it has – yet the other enzymes still play an important role in digestion.

I’ve observed that it’s pretty common for people to completely ignore the protein in what they’re eating. But as I mentioned, that seems to be the most obvious thing to try dosing for if “low fat” meals are causing issues. (It could also be sensitivity to carbohydrates, but the above example meal is fairly low carbohydrate.) My personal experience has also been that I am sensitive to fat and protein, and dose my meals based on these macronutrients, but other than eating fruit on an empty stomach (when I would add PERT/enzyme, despite the zero fat and protein in it), I don’t need to dose based on carbohydrates.

But I do need to dose for BOTH fat AND protein in what I’m eating. And I have a theory that a lot of other people with EPI do, too.

So how do you do this?

How do you dose for meals of different sizes, and take into account both fat and protein for these varying meals?

First, you need to figure out what dosing “works” for you and begin to estimate some “ratios” that you can use.

Most people begin experimenting and find a quantity of food that they can eat with the dose that they typically take. This meal size is going to vary person to person; it’ll also vary based on what it is in the meal they’re eating (such as chicken vs chili, from the above examples).

Once you find a dose that “works” and try it out a few times on the same meal, you can use this to determine what your ratios/dosing should be.

How?

Let’s use two examples with different dose sizes and types of PERT.

(PS – did you know there are 6 FDA-approved PERT brands in the US? Sometimes one works for someone where a different brand does not. If you’re struggling with the first type of PERT you’ve been prescribed, and you’ve already ruled out that you’re dosing correctly (see below), make sure to talk to your doctor and ask about trying a different brand.)

First, let’s calculate the ratios of lipase needed per gram of fat.

Let’s say the meal that “works” with your typical dose is 30 grams of fat. If 30 grams of fat is fine on your current dose, I would eat another meal with a slightly higher amount of fat (such as 35 or 40 grams of fat). When you get to an amount that “doesn’t work” – meaning you get symptoms – then you go back to the dose that does “work” to use in the math.

If the meal that “worked” was 30 grams of fat I would do the following math for each of these two examples:

Example A: You need 1 pill of Zenpep 25,000 to cover this meal

Example B: You need 3 pills of Creon 36,000 to cover this meal

Example A: 1 pill of Zenpep 25,000 is 1 multiplied by 25,000, or 25,000 units of lipase. Take that (25,000) and divide it by the grams of fat in the meal that works (30 grams). This would be 25,000/30 = 833. This means you need 833 units of lipase to “cover” 1 gram of fat. You can round up to ~1000 units of lipase to make it easier; your ratio would be 1000 units of lipase for every 1 gram of fat.

Example B: 3 pills of Creon 36,000 is 3 multiplied by 36,000, which is 108,000 units of lipase. Take that number (108,000) and divide it by the grams of fat in the meal that works (30 grams). This would be 108,000/30 = 3,600. This means you need 3,600 units of lipase to “cover” 1 gram of fat.

The next time you wanted to eat a meal, you would look at the grams of fat in a meal.

Let’s say you’re going to eat two bowls of chili and two pieces of cornbread. Let’s assume that is about 64 grams of fat. (Two bowls of chili and two cornbread is 30×2=60, plus a bit of butter for the cornbread so we’re calling it 64 grams of fat).

Example A: Take the meal and multiply it by your ratio. 64 (grams of fat) x 1,000 (how many units of lipase you need to cover 1 grant of fat) = 64,000. A Zenpep 25,000 has 25,000 lipase. Since you need 64,000 (units of lipase needed to cover the meal), you would divide it by your pill/dose size of 25,000. 64,000 divided by 25,000 is 2.56. That means for these ratios and a prescription of Zenpep 25,000 pill size, you need *3* Zenpep 25,000 to cover a meal of 64g of fat. (Remember, you can’t cut a PERT, so you have to round up to the next pill size.)

Example B: Take the meal and multiply it by your ratio. 64 (grams of fat) times 3,600 (how many units of lipase you need to cover 1 grant of fat) = 230,400. A Creon 36,000 has 36,000 lipase. Since you need 230,400 units of lipase to cover the meal, you would divide it by your pill/dose size of 36,000. 230,400 divided by 36,000 is 6.4. This means you need *7* Creon 36,000 to cover a meal of 64g of fat. (Again, you can’t cut a PERT, so you have to round up to 7 from 6.4.)

Another way to think about this and make it easier in the future is to determine how much one pill “covers”.

Example A: A Zenpep 25,000 “covers” 25 grams of fat if my ratio is 1000 units of lipase for every gram of fat (25,000/1000=25).

So if a meal is under 25g of fat? 1 pill. A meal under 50g (25×2)? 2 pills. 75g (25×3)? 3 pills. And so on. Once you know what a pill “covers”, it’s a little easier; you can simply assess whether a meal is above/below your pill size of 1 (25g), 2 (50g), 3 (75g) etc.

Example B: A Creon 36,000 “covers” 10 grams of fat if my ratio is 3,600 units of lipase for every gram of fat (36,000/3600=10).

So if a meal is under 10 grams of fat? 1 pill. 20 grams of fat is 2 pills (10×2); 30 grams of fat is 3 pills (10×3); etc.

When people with EPI share experiences online, they often describe their dose size (such as 1 x 25,000 or 3 x 36,000 like examples A and B above) for most meals, but the meal size and composition is rarely discussed.

Personally, I can eat pretty widely varying amounts of fat in each meal on a day to day basis.

That’s why, instead of a flat dosing that works for everything (because I would be taking a LOT of pills at every meal if I was trying to take enough to cover my highest fat meals every time), I have found it to be more effective to estimate each meal to determine my meal dosing.

Remember that meal estimates aren’t very precise. If you use a nutrition panel on a box serving, the serving size can vary a bit. Restaurants (especially chains) have nutrition information, but the serving size can vary. So recognize that if you are calculating or estimating 59 grams of fat and that means either 2 vs 3 pills or 6 vs 7 pills, that you should use your judgment on whether you want to round up to the next pill number – or not.

Let’s put the hypothetical meals side by side and compare dosing with examples A and B from above:

Example of how much PERT is needed for two different meals based on dose ratios from Examples A and B

Using the previous meal examples with either 7 or 30 grams of fat:

  • With Example A (ratio of 25g of fat for every 1 pill, or 1000 units of lipase to cover 1 gram of fat), we would need 1 pill for the chicken meal and 2 for the chili meal. Why? The chili is >25 grams of fat which means we need to round up to 2 pills.
  • With Example B (ratio of 10 grams of fat for every 1 pill or 3600 units of lipase to cover 1 gram of fat), we would need 1 pill to cover the chicken (because it’s less than 10 grams of fat) and 3 – or more – pills for the chili. Why “or more”? Well, something like chili is likely to be imprecisely counted – and if you’re like me, you’d want a bit of extra cheese, so chances are I would round up to a 4th pill here to take in the imprecision of the measurements of the ingredients.

PERT Dosing for Protein

Wait, didn’t you say something about protein?

Yes, I did. Fat isn’t the only determinant in this math!

I do the same type of math with grams of protein and units of protease. (Remember, PERT has all 3 types of enzymes, even though it is labeled by the amount of lipase. You can look online or on the bottle label to see how much protease is in your PERT.)

For our examples, Zenpep 25,000 contains 85,000 units of protease. Creon 36,000 contains 114,000 units of protease.

For the meal that ‘worked’ of 30 grams of fat, we also want to know the protein that worked. For easy math, let’s also say 30 grams of protein is in this meal.

Following the same math as before:

Example A (Zenpep 25,000): 30 grams of protein divided by 1×85,000 units of protease is ~2,833 units of protease to every 1 gram of protein. Again, I like to think about how much 1 pill “covers” protein-wise. In this case, 1 Zenpep 25,000 “covers” 30 grams of protein.

Example B (Creon 36,000): 30 grams of protein divided into 3 x 114,000 units of protease is 11,400 units of protease per gram of protein. Again, I like to think about how much 1 pill “covers” protein-wise as well. In this case, 1 Creon 36,000 “covers” 10 grams of protein.

Here’s how many pills are needed for protein:

Example of how much PERT is needed for two different meals based on dose ratios from Examples A and B, showing both protein and fat quantities

  • With Example A (ratio of 30g of protein for every 1 pill), we would need 1 pill for the chicken meal and 2 for the chili meal. Why? The chili is 42, which is greater than (30×1) grams of protein which means we need to round up to 2 pills.
  • With Example B (ratio of 10 grams of protein for every 1 pill), we would need 3 or more pills to cover the chicken. Why 3 or more? Again, it’s on the top edge of what 3 pills would cover, so I’d be likely to round up to 4 pills here. For the chili, 5 pills are needed (42 is more than 4 x 10 and is less than 5 x 10).

So how do you decide the number of pills to take for these meals? Let’s go back to our two example meals and compare the amount needed, pill-wise, for both fat and protein for each meal and each example.

Example of how much PERT is needed for two different meals based on dose ratios from Examples A and B and comparing the number of pills for fat and protein

When the pill numbers MATCH (e.g. the same number needed for fat and protein), which is the case for both examples with Zenpep 25,000, it’s easy: take that number of pills total! For Zenpep 25,000, I would take 1 pill for the Chicken (1 fat | 1 protein); and I would take 2 pills for the Chili (2 fat | 2 protein). Remember that PERT pills contain all three enzymes, so the fat and protein are sufficiently *each* covered by the quantities of lipase and protease in this pill type.

When the pill numbers are DIFFERENT between your fat and protein estimates, you use the LARGER number of pills. For Creon 36,000, with the chicken meal the protein quantity is much larger than the fat quantity; I would in this case dose 4 total pills (1 fat | 4 protein), which would then cover the protein in this meal and would also sufficiently cover the amount of fat in this meal. For the chili meal, it is closer: I estimated needing 4 pills for fat and 5 for protein; in this case, I would take 5 total pills which would then successfully cover the protein and the fat in the meal.

If you find the math challenging to do, don’t worry: once you determine your ratios and figure out how much one pill “covers”, it gets a lot easier.

And I made a few tools to help you!

Check out this free enzyme calculator which does the math to determine the ratios on exactly how much one pill “covers” for your successful meal.

(The calculator is for entering one meal at a time, and doesn’t save them, but if you’d like AI to estimate what is in your meal and help you log and save multiple meals, check out PERT Pilot if you have an iPhone.)

Here’s what it looks like using the two examples above:

Example of Part 1 of the EPI Enzyme Calculator using Zenpep 25,000, where 1 pill covers 30 grams of fat and 30 grams of protein. Example of Part 1 of the EPI Enzyme Calculator using Creon 36,000, where 3 pills covers 30 grams of fat and 30 grams of protein.

You can input your meal that “works”, what your dose is that “works” (the number of pills and pill type), and it will share what your ratios are and what one pill “covers”.

You can also use the second part of the calculator to estimate the amount you need for a future meal! Say it’s coming up on a holiday and you’re going to eat a much larger meal than you normally do.

You can input into the calculator that you’ll be eating 90 grams of fat and 75 grams of protein.

Here’s the example with our dose from Example A (Zenpep 25,000):

Example of Part 2 of the EPI Enzyme Calculator using Zenpep 25,000, with a future larger meal of 90 grams of fat and 75 grams of protein.

Here’s the example large meal with our dose from Example B (Creon 36,000):

Example of Part 2 of the EPI Enzyme Calculator using Creon 36,000, with a future larger meal of 90 grams of fat and 75 grams of protein.

You can also hit the button to expand the calculations to see the math it is doing, and how it compares between the fat and protein pill estimates to see what “drives” the total number of pills needed.

You can also hit the button to expand the calculations to see the math it is doing, and how it compares between the fat and protein pill estimates to see what “drives” the total number of pills needed, with the calculation view expanded to show all the details

You can even download a PDF with this math to have on hand. Here’s what the PDF download looks like for Example B (Creon 36,000):

Example of a PDF print view of the same data from previous screenshots with a Creon 36000 example

Switching dose sizes or PERT brand types

This calculator can also be useful if you were originally prescribed a smaller quantity of PERT (e.g. Creon 3000 or Zenpep 3000) and you find yourself taking many numbers of these pills (6 or more) to cover a small meal for you, let alone more pills for a larger meal.

You can input this into the calculator and get your ratios; then in the second part, identify a different pill size, to see how many numbers of pills you’d take on a different dose.

Example switching from one size of PERT pill to another size

You can also use it to help you understand how much you might need if you are switching between brands. Let’s say you were prescribed Zenpep 25,000 and you need to try Creon, either because you don’t think Zenpep works well for you or your insurance is more willing to cover the Creon brand.

You would use the top part of the calculator with your current brand and size (e.g. Zenpep 25,000 of which you take 6 for a standard meal of 30 grams of fat and 30 grams of protein) and then input the new brand and size and the same size meal (e.g. Creon 36,000 and another 30 grams of fat and 30 grams of protein meal) to see that you’d likely need 5 Creon 36,000 to match the 6 Zenpep 25,000 you were taking for a standard size (30 gram of fat and 30 gram of protein) meal.

Example of using the calculator to estimate the different number of pills for a different brand and size of PERT pill

Note: I’m not suggesting 30 grams of fat and protein at each meal is “standard” or the “right” size of the meal – I picked arbitrary numbers here to illustrate these examples, so make sure to include the meal that your PERT dosing successfully covers for YOU!

As a reminder, I’m not a doctor – I’m a person living with EPI. None of this is medical advice. I use this math and this calculator for my own personal use and share it in case it’s helpful to others. If you have questions, please do talk to your doctor. If you’re still experiencing symptoms with your enzyme dosing, you definitely should talk with your doctor. Your prescription size might need updating compared to what you were originally prescribed.

Also, please note that the calculator is open source; you can find the code here, and I welcome contributions (pull requests) and suggestions! You can leave feedback on Github or share feedback in this form. For example, if you’re using a different type of enzyme not listed in the calculator (currently 2/6 of the US FDA-approved versions are listed), please let me know and I can work to add the relevant list.

PS – You can find my other posts about EPI at DIYPS.org/EPI, and you can also check out PERT Pilot, the first iOS app for Exocrine Pancreatic Insufficiency! It’s an iOS app that allows you to record as many meals as you want, the PERT dosing and outcomes, to help you visualize and review more of your PERT dosing data!


You can also contribute to a research study and help us learn more about EPI/PEI – take this anonymous survey to share your experiences with EPI-related symptoms!

More Tools To Help Diabetes Researchers and Other Researchers

A few years ago I made a big deal about a tool I had created, converting someone’s web tool into a command line tool to be able to take complex json data and convert it to csv. Years later, I (and thousands of others, it’s been downloaded 1600+ times!) am still using this tool because there’s nothing better that I’ve found when you have data that you don’t know the data structure for or the data structure varies across files.

I ended up creating a repository on Github to store it with details on running it, and have expanded it over the last (almost) six years as I and others have added additional tools. For example, it’s where Arsalan, one of my frequent collaborators, and I store open source code from some of our recent papers.

Recently, I added two more small scripts. This was motivated to help researchers who have been successfully using the OpenAPS Data Commons and want to update their dataset with a later version of the data. Chances are, they have cleaned and worked with a previous version of the dataset, and instead of having to re-clean all of the data all over again, this set of scripts should help narrow down what the “new” data is that needs to be pulled out, cleaned, and appended to a previously cleaned dataset.

You can check out the full tool repository here (it has several other scripts in addition to the ones mentioned above). The latest are two python scripts that checks the content of an existing folder and lists out the memberID and filenames for each. This is useful to run on an existing, already-cleaned dataset to see what you currently have. It can also be run on the latest/newest/bigger dataset available. Then, the second script can be run to compare the memberIDs and file names in the newer/biggest/larger dataset against the previously cleaned/smaller/older dataset. Those that “match” already exist in the version of the dataset they have; they don’t need to be pulled again. The others don’t exist in the current dataset, and can be popped into a script to pull out just those data files to then be cleaned and appended to the existing dataset.

As a heads up specifically for those working with the OpenAPS Data Commons, it is best practice to name/describe the version of the dataset via the size. For example, you might be working with the n=88 or n=122 version of the dataset. If you used the above method, you would then describe it along the lines of taking and cleaning the n=122 version; selecting new files available from the n=183 version and appending them to the n=122 version; and the resulting dataset is n=(122+number of new files used).

Folks who access the n=183 version of the dataset and haven’t previously used a smaller version of the dataset can reference using the n=183 and clarifying how many files they ended up using, e.g. describing that they followed X method to clean the data starting from the n=183 version and their resulting dataset is n=166, for example.

It is important to clarify which version and size of the dataset is being used.

PS – this method works on other data file types, too! You’d change the variable/column header names in the script to update this for other cases.