Piecing together your priorities when your pieces keep changing

When dealing with chronic illnesses, it sometimes feels like you have less energy or time in the day to work with than someone without chronic diseases. The “spoon theory” is a helpful analogy to illustrate this. In spoon theory, each person has a certain number of “spoons” representing their daily energy available for tasks including activities of daily living, activity or recreation activity, work, etc. For example, an average person might have 10 spoons per day, using just one spoon for daily tasks. However, someone with chronic illness may start with only 8 spoons and require 2-3 spoons for the same daily tasks, leaving them with fewer spoons for other activities.

I’ve been thinking about this differently lately. My priorities on a daily basis are mixed between activities of daily living (which includes things like eating, managing diabetes stuff like changing pump site or CGM, etc); exercise or physical activity like walking or cross-country skiing (in winter) or hiking (at other times of the year); and “work”. (“Work” for me is a mix of funded projects and my ongoing history of unfunded projects of things that move the needle, such as developing the world’s first app for exocrine pancreatic insufficiency or developing a symptom score and validating it through research or OpenAPS, to name a few.)

A raccooon juggles three spoonsAs things change in my body (I have several autoimmune diseases and have gained more over the years), my ‘budget’ on any given day has changed, and so have my priorities. During times when I feel like I’m struggling to get everything done that I want to prioritize, it sometimes feels like I don’t have enough energy to do it all, compared to other times when I’ve had sufficient energy to do the same amount of daily activities, and with extra energy left over. (Sometimes I feel like a raccoon juggling three spoons of different weights.)

In my head, I can think about how the relative amount of energy or time (these are not always identical variables) are shaped differently or take up different amounts of space in a given day, which only has 24 hours. It’s a fixed budget.

I visualize activities of daily living as the smallest amount of time, but it’s not insignificant. It’s less than the amount of time I want to spend on work/projects, and my physical activity/recreation also takes up quite a bit of space. (Note: this isn’t going to be true for everyone, but remember for me I like ultrarunning for context!)

ADLs are green, work/projects are purple, and physical activity is blue:

Example of two blocks stacked on each other (green), four blocks in an l shape (purple), three blocks in a corner shape (blue)

They almost look like Tetris pieces, don’t they? Imagine all the ways they can fit together. But we have a fixed budget, remember – only 24 hours in the day – so to me they become Tangram puzzle pieces and it’s a question every day of how I’m going to construct my day to fit everything in as best as possible.

Preferably, I want to fit EVERYTHING in. I want to use up all available time and perfectly match my energy to it. Luckily, there are a number of ways these pieces fit together. For example, check out these different variations:

8 squares with different color combinations with a double block, an l shaped block, and a corner (three pieces) block. All squares are completely full, but in different combinations/layouts of the blocks

But sometimes even this feels impossible, and I’m left feeling like I can’t quite perfectly line everything up and things are getting dropped.

Example of a square where the blocks don't all fit inside the squareIt’s important to remember that even if the total amount of time is “a lot”, it doesn’t have to be done all at once. Historically, a lot of us might work 8 hour days (or longer days). For those of us with desk jobs, we sometimes have options to split this up. For example, working a few hours and then taking a lunch break, or going for a walk / hitting the gym, then returning to work. Instead of a static 9-5, it may look like 8-11:30, 1:30-4:30, 8-9:30.

The same is true for other blocks of time, too, such as activities of daily living: they’re usually not all in one block of time, but often at least two (waking up and going to bed) plus sprinkled throughout the day.

In other words, it’s helpful to recognize that these big “blocks” can be broken down into smaller subunits:

Tangram-puzzle-pieces-different-shapes-closeup-DanaMLewis

And from there… we have a lot more possibilities for how we might fit “everything” (or our biggest priorities) into a day:

Showing full blocks filled with individual blocks, sometimes linked but in different shapes than the L and corner shapes from before.

For me, these new blocks are more common. Sometimes I have my most typical day with a solid block of exercise and work just how I’d prefer them (top left). Other times, I have less exercise and several work blocks in a day (top right). Other days, I don’t have energy for physical activity, activities of daily living take more energy or I have more tasks to do and I also don’t have quite as much time for longer work sections (bottom left). There’s also non-work days too where I prioritize getting as much activity as I can in a day (bottom right!). But in general, the point of this is that instead of thinking about the way we USED to do things or thinking we SHOULD do things a certain way, we should think about what needs to be done; the minimum of how it needs to be done; and think creatively about how we CAN accomplish these tasks, goals, and priorities.

A useful trigger phrase to check is if you find yourself saying “I should ______”. Stop and ask yourself: should, according to what/who? Is it actually a requirement? Is the requirement about exactly how you do it, or is it about the end state?

“I should work 8 hours a day” doesn’t mean (in all cases) that you have to do it 8 straight hours in a row, other than a lunch break.

If you find yourself should-ing, try changing the wording of your sentence, from “I should do X” to “I want to do X because Y”. It helps you figure out what you’re trying to do and why (Y), which may help you realize that there are more ways (X or Z or A) to achieve it, so “X” isn’t the requirement you thought it was.

If you find yourself overwhelmed because it feels like you have a big block task that you need to do, this is also helpful then to break it down into steps. Start small, as small as opening a document and writing what you need to do.

My recent favorite trick that is working well for me is putting the item of “start writing prompt for (project X)” on my to-do list. I don’t have to run the prompt; I don’t have to read the output then; I don’t have to do the next steps after that…but only start writing the prompt. It turns out that writing the prompt for an LLM helps me organize my thoughts in a way that it then makes the subsequent next steps easier and clearer, and I often then bridge into completing several of those follow up tasks! (More tips about starting that one small step here.)

The TL;DR: perhaps is that while we might yearn to fit everything in perfectly and optimize it all, it’s not going to always turn out like that. Our priorities change, our energy availability changes (due to health or kids’ schedules or other life priorities), and if we strive to be more flexible we will find more options to try to fit it all in.

Sometimes we can’t, but sometimes breaking things down can help us get closer.

Showing how the blocks on the left have fixed shapes and have certain combinations, then an arrow to the right with example blocks using the individual unit blocks rather than the fixed shapes, so the blocks look very different but are all filled, also.

What bends and what breaks and the importance of knowing the difference as a patient

As a patient, navigating healthcare often feels like decoding a complex rulebook. There are rules for everything: medication dosages, timing protocols, follow-up intervals. Some of these rules matter a lot, for either short term or longer term safety or health outcomes. But at other times… the rules seem senseless and are applied differently based on different healthcare providers within the same specialty, let alone across different specialities. As a patient, it’s easy to initially want to try to follow all rules perfectly, but feel unable to because the rules don’t make sense in a personal context. Over time, it can be hard to resist the conclusion that the rules don’t matter or don’t apply to you. The reality is somewhere in between. And it’s the in-between part that can be a challenging balance to figure out. Learning to navigate this balance requires understanding which rules are flexible and which aren’t.

I’ve learned there’s enormous value in digging into the “why” behind medical recommendations, when I can. Take acetaminophen (Tylenol), for example. There’s a clear, non-negotiable daily limit on the bottle because exceeding it is dangerous. The over-the-counter recommendation for Extra Strength acetaminophen (500 mg tablets) is no more than two tablets every six hours, not exceeding six tablets in 24 hours. Which actually means 3 doses per day, despite the 6 hour recommendation. This maximum daily limit (no more than six tablets) is set close to the safety threshold; exceeding that limit (eight tablets in 24 hours) increases the risk of severe liver damage.

Understanding this daily limit provides flexibility within safe boundaries (with the obvious caveat that I’m not a doctor and you should always talk to your own doctor). The “every 6 hours” recommendation ensures stable bioavailability of acetaminophen throughout the day, and making sure over the course of 24 hours that you are safely and completely below the max dosage line. Slight deviations to timing, such as taking a dose at 5 hours and 30 minutes instead of precisely 6 hours because you’re about to go to sleep, do not inherently cause harm, as long as the total intake remains within the safe daily limit. This is an example where a compliance-oriented guideline is designed primarily for optimal adherence at the population based level, rather than marking an absolute safety threshold at each individual dose.

There are a lot of things like this in healthcare, but it’s not always explained to patients and patients may not always think to stop and question the why – or have the time and resources to do so – and figure it out from first principles to decide whether a deviation on the timing or amount is risky, or not.

But many healthcare rules aren’t as clearly defined by safety, as is the case of the acetaminophen example. Other rules are shaped by convenience, compliance, and practical constraints of research protocols.

Timelines like “two weeks,” “one month,” or “six months” for follow-up visits or medication titration points often reflect research convenience more than physiological necessity or even the ideal best practice. These intervals might mark study endpoints, or convenience to the healthcare system, but they don’t necessarily pinpoint the best timeline overall or the right timeline for an individual patient. It can be hard as a patient to decide if your experience is deviating from the typical timeline in a beneficial or non-optimal way, and if and when to speak up and try to better adjust to the system or adjust the system to meet your needs (such as scheduling an earlier appointment rather than waiting for a mythical 4 month follow up when it’s clear by months 2-3 that there is no benefit to a treatment because any impact should have been observed by then, even if it wasn’t significant).

As a patient, understanding when rules reflect safety versus when they’re crafted primarily for convenience is crucial, but hard. Compliance-driven rules can sometimes be thoughtfully bent. They might be able to be adjusted to better fit individual circumstances without compromising safety. For instance, a medication schedule set strictly every eight hours might be modified slightly based on daily activities or sleep patterns, provided the change remains within safe therapeutic boundaries over the course of 24 hours. (And patients should be able to discuss this with their doctors! But time availability or access may influence the ability to have these conversations up front or over time as conflicts or issues arise.)

Yet, bending rules requires confidence, critical thinking, and often significant resources, whether those are educational, emotional, health itself, or financial. It means feeling secure enough to question a provider’s advice or advocate for adjustments tailored to individual needs. It’s not always even questioning the advice itself, but checking the understanding and interpretation of how you apply it to your own life. Most providers understand that, and have no problem confirming your understanding. Other times, though, it can accidentally or unintentionally cause conflict, if providers sometimes perceive questioning of their judgement.

I’ve tripped into that situation at least once accidentally before, when I had a follow up appointment with a non-MD clinical provider who wasn’t my main doctor at the practice, who I was seeing for an acute short-term issue. She was describing a recommendation for an rx, specifically because I have diabetes. In the past, I have received over-treatment from most providers because of having type 1 diabetes, because many recommendations for non-diabetes management that have guidance for people with diabetes are based on an assumption of non-optimal healing and non-optimal glucose management. Given that at the time I was already using OpenAPS, with ideal glucose outcomes for years, and no issues ever with reduced healing, I asked if the prescription recommendation would be given to the same type of patient without diabetes. I was trying to help myself make an informed decision about whether to accept the recommendation for the rx to determine if it was appropriate. If it was just because I had diabetes, it warranted additional discussion. It wasn’t about her clinical judgement per se, but about a shared decision making process to right-size the next steps to my individual situation, rather than assume that population-based outcomes for people with diabetes were automatically appropriate. Because of my experience, I know that sometimes they are and sometimes they are not, so I’ve learned to ask these questions. However, some combination of the lack of existing relationship with this provider; perhaps a poorly worded question; and other factors made the provider act defensive. I got the information I needed, decided the rx was appropriate for me and I would use it, and went about my business. But I got a follow up call later from another MD (again, not my MD) who was defensive and calling to check why I was questioning this non-MD provider and it came across as if I was questioning her because the provider was a non-MD…which was not the issue at all! It was about me and my care and making sure I understood the root of the recommendation: whether it was because of the health situation or because I had diabetes. (It was the former, about the health situation, although initially articulated as being simply because of the latter fact of simply having diabetes.)

This situation has colored all future encounters with healthcare providers for me. Seeing new providers who I don’t have a longstanding relationship with makes me nervous, from learned, lived experience about how some of these one-off encounters have gone in the past, like the ones above.

Unfortunately, patients who push back against compliance-driven rules or simply ask questions to facilitate their understanding risk being labeled “non-compliant” or “non-adherent”, and sometimes we get labels on our chart for asking questions and being misunderstood, despite our good intentions. Such labels can have lasting impacts, influencing how future providers perceive our reliability and credibility and can cause subsequent issues for receiving or even being granted access to healthcare.

This creates a profound dilemma for patients: follow all rules precisely, without question, but potentially sacrificing optimal care, or thoughtfully question to bend them and risk being misunderstood or penalized for trying to optimize your individual outcomes when the one-size-fits-all approach doesn’t actually fit.

Breaking compliance-oriented rules isn’t about defiance. At least, it’s never been that way for me. It’s about personalization and achieving the best possible outcomes. But not every patient has the luxury of confidently navigating these nuances, and even when they do, as described above, it can still sometimes turn out not so well. Many patients don’t have the time, energy, resources, or privilege required to safely challenge or reinterpret guidelines. Or they’ve been penalized for doing so. Consequently, they may remain strictly compliant, potentially missing opportunities for better individual outcomes and higher quality of life.

Healthcare needs to provide clarity around which rules are absolute safety boundaries and which are recommendations optimized primarily for convenience or broad adherence for the safe general public use. Patients deserve transparency and support in discerning between what’s bendable for individual benefit and what’s non-negotiable for safety.

What bends, what breaks and the importance of understanding the difference in healthcare. A blog post by Dana M. Lewis from DIYPS.orgAnd: patients should not be punished for asking questions in order to better understand or check their understanding. 

Knowing the difference on what bends and what breaks matters. But many patients remain caught in the delicate balance between bending and breaking, carefully evaluating risks and rewards, often alone.

Just Do Something (Permission Granted)

Just do it. And by it, I mean anything. You don’t need permission, but if you want permission, you have it.

If you’ve ever found yourself feeling stuck, overwhelmed (by uncertainty or the status of the world), and not sure what to do, I’ll tell you what to do.

Do something, no matter how small. Just don’t wait, go do it now.

Let’s imagine you have a grand vision for a project, but it’s something you feel like you need funding for, or partners for, or other people to work on, or any number of things that leave you feeling frozen and unable to do anything to get started. Or it’s something you want the world to have but it’s something that requires expertise to build or do, and you don’t have that expertise.

The reality is…you don’t need those things to get started.

You can get started RIGHT NOW.

The trick is to start small. As small as opening up a document and writing one sentence. But first, tell yourself, “I am not going to write an entire plan for Z”. Nope, you’re not going to do that. But what you are going to do is open the document and write down what the document is for. “This document is where I will keep notes about Plan Z”. If you have some ideas so far, write them down. Don’t make them pretty! Typos are great. You can even use voice dictation and verbalize your notes. For example “develop overall strategy, prompt an LLM for an outline of steps, write an email to person A about their interest in project Z”.

Thanks to advances in technology, you now have a helper to get started or tackle the next step, no matter how big or small. You can come back later and say “I’m not going to do all of this, but I am going to write the prompt for my LLM to create an outline of steps to develop the strategy for project Z”. That’s all you have to do: write the prompt. But you may find yourself wanting to go ahead and paste the prompt and hit run on the LLM. You don’t have to read the output yet, but it’s there for next time. Then next time, you can copy and paste the output into your doc and review it. Maybe there will be some steps you feel like taking then, or maybe you generate follow up prompts. Maybe your next step is to ask the LLM to write an email to person A about the project Z, based on the outline it generated. (Some other tips for prompting and getting started with LLMs here, if you want them.)

The beauty of starting small is that once you have something, anything, then you are making forward progress! You need progress to make a snowball, not just a snowflake in the air. Everything you do adds to the snowball. And the more you do, the easier it will get because you will have practice breaking things down into the smallest possible next step. Every time you find yourself procrastinating or saying “I can’t do thing B”, get in the habit of catching yourself and saying: 1) what could I do next? And write that down, even if you don’t do it then, and 2) ask an LLM “is it possible” or “how might I do thing B?” and break it down further and further until there’s steps you think you could take, even if you don’t take them then.

I’ve seen posts suggesting that increasingly funders (such as VCs, but I imagine it applies to other types of funders too) are going to be less likely to take projects seriously that don’t have a working prototype or an MVP or something in the works. It’s now easier than ever to build things, thanks to LLMs, and that means it’s easier for YOU to build things, too.

Yes, you. Even if you’re “not technical”, even if you “don’t know how to code”, or even if you’re “not a computer person”. Your excuses are gone. If you don’t do it, it’s because you don’t WANT to do it. Not knowing how to do it is no longer valid. Sure, maybe you don’t have time or don’t want to prioritize it – fine. But if it’s important to you to get other people involved (with funding or applications for funding or recruiting developers), then you should invest some of your time first and do something, anything, to get it started and figure out how to get things going. It doesn’t have to be perfect, it just has to be started. The more progress you make, the easier it is to share and the more people can discover your vision and jump on board with helping you move faster.

Another trigger you can watch for is finding yourself thinking or saying “I wish someone would do Y” or “I wish someone would make Z”. Stop and ask yourself “what would it take to build Y or Z?” and consider prompting an LLM to lay out what it would take. You might decide not to do it, but information is power, and you can make a more informed decision about whether this is something that’s important enough for you to prioritize doing.

And maybe you don’t have an idea for a project yet, but if you’re stewing with uncertainty these days, you can still make an impact by taking action, no matter how small. Remember, small adds up. Doing something for someone else is better than anything you could do for yourself, and I can say from experience it feels really good to make even small actions, whether it’s at the global level or down to the neighborhood level.

You probably know more what your local community needs, but to start you brainstorming, things you can do include:

  • Go sign up for a session to volunteer at a local food bank
  • Take groceries to the local food bank
  • Ask the local food bank if they have specific needs related to allergies etc, such as whether they need donations of gluten-free food for people with celiac
  • Go take books and deposit them at the free little libraries around your neighborhood
  • Sign up for a shift or get involved at a community garden
  • Paint rocks and go put them out along your local walking trails for people to discover
  • Write a social media post about your favorite charity and why you support it, and post it online or email it to your friends
  • Do a cost-effective analysis for your favorite nonprofit and share it with them (you may need some data from them first) and also post it publicly

Just-do-something-you-have-permission-DanaMLewisI’ve learned from experience that waiting rarely creates better outcomes. It only delays impact.

Progress doesn’t require permission: it requires action.

What are you waiting for? Go do something.

The Cost-Effectiveness of Life for a Child – A Deep Dive into DALY Estimates and the 2025 Funding Gap

Life for a Child is an international non-profit organization that supports children with diabetes by providing insulin, test strips, and essential diabetes care to over 60,000 children in low-income countries who would otherwise have little to no access to treatment.

Without access to supplies and skilled medical care, children with type 1 diabetes (T1D) often die quickly, and with only intermittent access may die within a few years of diagnosis. In some countries,  limited amounts and types of older insulins may be provided by the health systems. In these ‘luckier’ countries, test strips are still not usually provided. Without regular blood glucose testing, children may survive into early adulthood, yet still experience early mortality due to long-term complications such as blindness, kidney failure, or amputations.

Life for a Child (LFAC) offers a lifeline, extending life expectancy and improving the quality of life for children at a remarkably low cost. Life for a Child also does incredibly critical work in improving care delivery infrastructures in each of these countries that they support. They work directly with local healthcare providers to co-develop critical education materials for young people living with diabetes. Further, they provide a support network to local healthcare providers and some governments. This is all to help improve sustainability of access to services, medications, and support for people with diabetes in the long run.

Scott and I have been supporting Life for a Child as our charity of choice for many years. As we wrote in our analysis here in 2017:

“Life for a Child seems like a fairly effective charity, spending about $200-$300/yr for each person they serve (thanks in part to in-kind donations from pharmaceutical firms). If we assume that providing insulin and other diabetes supplies to one individual (and hopefully keeping them alive) for 40 years is approximately the equivalent of preventing a death from malaria, that would mean that Life for a Child might be about half as effective as AMF, which is quite good compared to the far lower effectiveness of most charities, especially those that work in first world countries.”

We used some of GiveWell’s analyses to assess effective giving, especially comparing options like GiveDirectly or more specific charity options like AMF:

​For example, the Against Malaria Foundation, the recommended charity with the most transparent and straightforward impact on people’s lives, can buy and distribute an insecticide-treated bed net for about $5.  Distributing about 600-1000 such nets results in one child living who otherwise would have died, and prevents dozens of cases of malaria.  As such, donating 10% of a typical American household’s income to AMF will save the lives of 1-2 African kids *every year*.”

(Note: In addition to donations, I also have supported Life for a  Child with my time at both the US level, serving on the US-based Life for a Child US board, as well as the US representative on the international steering committee for Life for a Child.)

However, in 2025, Life for a Child faces an immediate and unexpected $300,000 funding shortfall, due to a previously committed donor no longer being able to provide this donation. This funding was for test strips, which will reduce the number of strips provided per child from three to two test strips per day.

Further, Life for a Child has additional funding needs to continue expanding to support more children who are otherwise unsupported and going without critical supplies. (The room for funding is several orders of magnitude above this year’s funding gap.)

In order to assess the need for how we (in a general sense, speaking of all of us) fill this funding gap and understanding if this is still a cost-effective way to support people with diabetes, we wanted to revisit our analysis for how cost-effective Life For a Child is.

For background, I asked Graham Ogle, head of LFAC, for some numbers. These include:

  • Life for A Child currently supports 60,000 children in 2025
  • The original expansion plan is a goal to support 100,000 children or more by 2030
  • Estimates for how much is spent per child is about $150 USD (slightly less than what Scott and I had estimated in 2017), or $160 USD if you incorporate indirect costs.

We used these numbers below to estimate the cost-effectiveness of Life for a Child’s interventions.

Estimating Life For A Child’s Cost per Disability-Adjusted Life Year (DALY)

The Disability-Adjusted Life Year (DALY) is the most commonly used metric in global health to capture both the years of life lost (YLL) due to premature death and the years lived with disability (YLD) due to a health condition, such as type 1 diabetes.

The goal of Life for a Child’s work is to reduce both of these by providing insulin and glucose monitoring as well as improved care necessary for improved health outcomes.

  1. Life for a Child support reduces Years of Life Lost (YLL) 

To estimate YLL reduction, we calculate the difference between the expected age at death for a child with T1D who receives no care versus a child receiving LFAC support:

  • Without Life for a Child :
    • In the worst-case scenario, children with T1D may die within 1-2 years due to lack of insulin, meaning an early death by age 10 instead of the typical life expectancy of 60 years in some of these countries. . This results in 50 YLLs (60 – 10 = 50).
    • In countries where insulin is available but costly and/or glucose monitoring is not affordable and readily available, children may survive into their late 20s or 30s, but still experience significant complications, reducing life expectancy. In this scenario (minimal access to insulin, glucose monitoring, etc), we make a rough assumption that children with diabetes may survive into their mid to late 30s, therefore 25 YLLs is a reasonable estimate (60 – 35 = 25).
  • With Life for a Child :
    • Life for a Child’s program significantly improves both short-term and long-term survival. We assume that children supported by Life for a Child have the potential to live to an average life expectancy of 50-60 years (instead of dying prematurely due to untreated T1D), even when considering that LFAC only supports children into early adulthood (e.g. 25-30 years of age).

If we assume the average life expectancy for children newly diagnosed with T1D increases from 15-35 years to 50-60 years with standard Life for a Child support, that gives a savings of 25-35 YLLs (DALYs) per child, accounting for most of the uncertainty in our lifespan estimates above.

  1. Years Lived with Disability (YLD) Reduction

T1D also causes significant disability when people with T1D don’t have access to insulin and/or sufficient glucose monitoring and monitoring for early signs of complications, especially due to complications like blindness, kidney failure, and amputations. Each of these conditions brings about substantial life impairment.

  • Without Life for a Child:
    • Children with poorly supported T1D face a high likelihood of severe complications as they age. We estimate the disability weight (DW) for this scenario at 0.20, reflecting significant disability as a result of some of those complications.
  • With Life for a Child:
    • Access to insulin and glucose monitoring and healthcare monitoring drastically reduces the risk of complications. We estimate a DW of 0.05, which represents a much lower level of disability, especially in terms of future complications.

With such DWs, the reduction in YLD before premature death (20%-5%=15% over 5-30 years = 1-4 DALYs), and the 5% reduction in the YLL benefit (5% * 25-35 = 1-2 DALYs) partially cancel out, and don’t change the end result much. The net gain of 1-2 DALYs due to YLD reduction is smaller than the uncertainty range on the YLL benefit.

So for purposes of cost-effectiveness calculations, we’ll ignore YLD in the rest of this post and continue using the 25-35 DALYs per child figure.

  1. Total DALYs and Cost per DALY

For this section, we’ll assume the total impact of Life for a Child’s intervention per child from the calculations above is 25-35 DALYs.

Life for a Child’s cost per child in 2025 is approximately $150 per year (or $160 including indirect costs), and if we estimate that most children receive treatment for about 15 years, meaning the total cost per child is roughly $1,500–$2,250 over that period (or $1,600-$2,400 total with indirect costs).

Thus, the cost per DALY for Life for a Child can be estimated as:

(Cost per child) / (DALYs saved per child)

Here are a variety of estimates for varying cost levels using the lower bound of 25 DALYs saved per child supported:

  • With $1,500 per lifetime per child ($150/year for 10 years) and 25 DALYs saved, that estimates $60 per DALY ($64 with indirect costs)
  • With $2,250 per lifetime per child ($150/year for 15 years) and 25 DALYs saved, that estimates $90 per DALY ($96 with indirect costs)
  • With slightly higher costs to assume the cost will rise over time of $175/year for 15 years, this is a higher estimated $2,625 per lifetime per child and 25 DALYs saved, estimating $105 per DALY.
  • With slightly higher costs to assume the cost will rise over time of $175/year for 20 years, this is a higher estimated $3,500 per lifetime per child and 25 DALYs saved, estimating $140 per DALY.

This places Life for a Child’s cost per DALY in the range of $60–$90, for conservative estimates a remarkably cost-effective intervention, and even the higher estimates of $105-$140 assuming an increase in costs and increase in years of support compares favorably to the most effective global health programs, including those recommended by GiveWell.

How did we come to this conclusion?

  • GiveWell estimates cash transfers through GiveDirectly result in $1000/DALY, based on welfare gains rather than direct health outcomes (so apples and oranges), but even apples to oranges we can estimate Life for a Child is more cost-effective by at least single digit (eg 1-9x) factors than cash giving elsewhere.
  • We know GiveWell’s top charities are around $50-$100/DALY. Given we were estimating $60-$140 with a wide swathe of estimates, we can see that Life for a Child aligns with some of GiveWell’s top charities in terms of cost per DALY and thus “compares favorably” in our analysis. 

Why You Should Donate to Life for a Child

The point of this post was for Scott and I to reassess our statement that we have been making since ~2017 or so, which is the fact that Life for a Child is a remarkably cost-effective charity overall, and likely one of the most cost-effective charities to support people living with diabetes around the world who otherwise won’t have access (or regular access) to insulin and blood glucose testing.

Life for a Child has a DALY cost in the range of $60-$140 (reflecting current versus future cost increases), depending on which input variables you use, which makes it one of the best uses of global health funding available today.

Because of this reassessment, we also hope if you’ve read this far that you, too, will consider making a life-saving and life-changing donation for people with diabetes by donating to Life for a Child.

If you’re feeling overwhelmed with world events and want to make a tangible difference in people’s lives in a measurable way, consider donating to Life for a Child.

If you want to support people with diabetes in the most cost-effective way, so that your donation dollars make the biggest impact? Donate to Life for a Child.

Your donation saves – and changes – lives.

Life for a Child is a cost-effective charity supporting people with diabetes that needs your help. A blog post from Dana M. Lewis at DIYPS.org(Thank you).

PS – feel free to reach out to me (Dana@OpenAPS.org) and/or Scott (Scott@OpenAPS.org) if you want to chat through any of the estimates or numbers in more detail and how we consider donations.

Scale yourself

One of the things I wish people would consider more often when thinking about AI is how they can use it to scale themselves. What are some time-consuming things that they currently have to do themselves that AI could do for them to streamline their output and increase their productivity? Productivity for giving them more time to do the things only they can do, the things they want to do, or the things they love to do. (And to help stop procrastinating on things they have to do.)

I have a habit of trying to scale myself. These days, it’s often related to EPI (exocrine pancreatic insufficiency, which some areas of the world know by the acronym PEI). I developed a strong knowledge base first from personal experience, then by doing research – including a systematic review where I read hundreds, plural, of research papers on key topics related to design protocols and guidelines. As a result of both personal and research experience, I have a lot of knowledge. It gets tapped almost daily in the EPI support groups that I’m a part of.

Whenever I notice myself answering the same question repeatedly, I make a mental note of it. Eventually, if a topic comes up often enough, I turn my response into a blog post. This way, I can provide a well-structured, comprehensive answer with more time and context than a quick comment on social media allows – and with the ability to give the same, high quality answer to multiple people (and in some cases, hundreds or thousands of people rather than the few who might see the comment buried in a response thread).

A few examples of this include:

One of my favorite things with this approach is then seeing other people begin to share the links to my longer-form content to help answer common questions. By writing things down in a shareable way, it also enables and supports other people to scale your work by sharing it easily. This has started to happen more and more with the elastase blog post, in part because there are so few resources that cover this information all in one place.

For me, I lean toward writing, but for other people that could be videos, podcast/audio recording, or other formats that can capture things you know and make them shareable, thus scaling yourself.

For me, this approach of “scaling myself” and thinking about longer form content to post online instead of re-typing similar answers over and over again isn’t unique to EPI.

I have been doing this for over a decade. I developed this pattern early after we developed and shared OpenAPS (the first open source automated insulin delivery algorithm) with the world. Early on, I found myself answering the same technical questions repeatedly in online discussions with the same answers. Typing out explanations on my phone was inefficient, and if one person had a question, others likely had the same one. Instead of repeating myself, I took the time to document answers. I would often pause, write up the information in the documentation, and share that instead. This made it easier and quicker to go find and share a link instead of retyping responses, and it also took less time, so I was willing to do it more quickly than if I had to delay what I was doing in real life in order to type out a long yet already-answered question. Over time, I had to do less one-off typing on my phone (and could save that time and energy for true, one-off unique questions) and could share links with a lot more information more easily.

How do I use AI to scale this type of work?

A lot of the above tasks are related to writing. There are different ways you can use AI for writing, without having it write something completely. You can give it notes – whether you type or voice dictate them – and have it clean up your notes, so you can focus on thinking and not about typing or fixing typos that break your flow. You can have it convert the notes into full sentences. You can ask it to write a paragraph or an article based on the notes. You can ask it to suggest wording for a particular sentence you want to clarify for your audience.

If you think about the AI as an intern and/or a partner/collaborator who you would ask to review or edit for you, you’ll likely find even more ways to integrate AI into different parts of your writing process, even if it’s not doing the full writing for you.

I have also tried to task the AI with writing for me, with mixed results. This doesn’t mean I don’t use it, but I’ve been practicing and learning where it generates usable content and where it doesn’t.

A lot of it depends on the prompt and the topic (as much as it does the output in terms of style, length, intended audience etc).

If it’s a topic that’s “known”, it can write more content that I can take and edit and transform, as opposed to when I am trying to write about a concept that is far from the current knowledge base. (I mean far for both humans and of AI – a lot of my work is bleeding edge, pushing fields towards new developments and leading humans there.) Sometimes I ask it to write something and end up using none of the content, but by saying “ugh no” my brain has jumped to saying to myself “it should really say…” and I am able to more quickly springboard into manually writing the content I was previously slow on. In other words, it can be a brainstorming tool in the opposite sense, showing me what I do not want to say on a topic! And on some of my frontier/bleeding edge topics, it reflects what is commonly ‘known’ and when what is known is now wrong (example, as always, of how it’s commonly incorrectly reported that chronic pancreatitis is the most common cause of EPI), it helps me more clearly distinguish the new content from the old, wrong, or misinformed.

(Also, it’s worth reminding you what I have to remind myself, that AI is changing constantly and new tools override what is known about what tasks do and don’t do well! For example, in between writing this and posting it, OpenAI released GPT4.5, which is reportedly better at writing-related tasks than GPT-4o and other older models. I’ll have to test it and see if that’s true and for what kinds of writing tasks!)

This isn’t the only way you can scale yourself with AI, though. Scaling yourself doesn’t have to be limited to writing and documentation style tasks. AI and other tools can help with many tasks (more examples here and here), such as:

  • Cleaning and transforming data into different formats
  • Converting a CSV file into a more readable table
  • Writing code to automate tedious data processing
  • Drafting plain-language instructions for engineers or programmers
  • Checking whether instructions or explanations are clear and understandable, and identifying any gaps in logic that you missed on your first pass

By leveraging AI and other automation tools, you can free up time and energy for higher-value work: the things you are uniquely suited to do in the world, and the things that you want or love to do. And do them more easily!

Pro tip: if you find yourself procrastinating a task, this may be a good sign that you could use AI for some of it. 

I’m trying to use noticing procrastination as a trigger for considering AI for a task.

An example of this is an upcoming post with a bunch of math and meaty cost analysis that I originally did by hand. I needed (wanted) to re-do these estimates with different numbers, but procrastinated a bit because having to carefully re-do all the estimates and replace them throughout the blog post seemed tedious, so my brain wanted to procrastinate. So, I took the blog post and dumped it in with a prompt asking it to write Jupyter Notebook code to replicate the analyses explained via the plain language post, with the ability to adjust all input variables and see the results in a table so I could compare the original and updated numbers. It took less than 1 minute to generate this code and about 5 minutes for me to copy/paste, update the numbers, run it, and evaluate the output and decide what to update in the post. Manually, this would’ve taken 30-60 minutes due to needing to check my work manually and trace it throughout the post. Instead, this automated the tedious bit and will result in this new post coming out next week rather than weeks from now (read about it here – it’s an analysis on how cost-effect Life for a Child is, a charity supporting people living with diabetes in low- and middle-income countries that can use your help to save lives.)

Scale yourself: automate more, so you can handle what matters, a blog by Dana M. Lewis from DIYPS.orgI encourage you to think about scaling yourself and identifying a task or series of tasks where you can get in the habit of leveraging these tools to do so. Like most things, the first time or two might take a little more time. But once you figure out what tasks or projects are suited for this, the time savings escalate. Just like learning how to use any new software, tool, or approach. A little bit of invested time up front will likely save you a lot of time in the future.